(z-1)^2*sin(1 z-1)在z=1处为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:28:57
若复数z满足|z+1|^2-|z-i|^2=1,求|z|的最小值

设z=x+yi(x,y为实数)1=|z+1|^2-|z-i|^2=|(x+1)+yi|^2-|x+(y-1)i|^2=(x+1)^2+y^2-[x^2+(y-1)^2]=x^2+2x+1+y^2-(x

已知复数z满足3z+(z-2)i=2z-(1+z)i,求z

设z=a+bi因为3z+(z-2)i=2z-(1+z)i所以3(a+bi)+(a+bi-2)i=2(a+bi)-(1+a+bi)i3a+3bi+ai-b-2i=2a+2bi-i-ai+b(3a-b)+

关于复数计算的问题sin t+cos t=1,z=cos t+i sin t(i是虚数单位),求z^0+z^1+z^2+

用棣每弗公式,z=cos t+i sin t=e^(it),然后用等比数列求和就行了.

已知模(z+1)/z=2 arg[(z+1)/z]=π/3 求z.

则由题意得,(z+1)/z=2(cosπ/3+sinπ/3*i),设z=a+bi(a+bi+1)/a+bi=2(cosπ/3+sinπ/3*i)a+1+bi=(a-sqrt(3))+(sqrt(3)a

虚数Z满足Z的模=1,Z^2+2Z+1/Z

虚数z满足|z|=1,z²+2z+1/z

已知x,y,z都是锐角,sin^2x+sin^2y+sin^2z=1,求tanx*tany*tanz的最值

已知x,y,z都是锐角,sin²x+sin²y+sin²z=1,求tanx*tany*tanz的最值证明:由原式得1-cos²x+1-cos²y+1-

已知复数z满足z+1/z∈R,|z-2|=2,求z

设z=a+bi,a,b是实数|z-2|^2=(a-2)^2+b^2=41/z=1/(a+bi)=(a-bi)/(a^2-b^2)z+1/z=[a+a/(a^2-b^2)]+[b-b/(a^2-b^2)

设复数z满足z 1/z=1/2,求z

设z=a+bi,1/(a+bi)=(a-bi)/(a^2+b^2)=1/2,显然b=0,a/(a^2+b^2)=1/2;a=2.得z=2

z的模=1,Z不等于正负i,求证z/(1+z^2)属于R

|z|=1且z≠±i,则可设z=cosθ+isinθz/(1+z²)=(cosθ+isinθ)/[1+(cosθ+isinθ)²]=(cosθ+isinθ)/(1+cos²

已知x,y,z属于(0,派/2),sin^2x+sin^2y+sin^2z=1,求(sinx+siny+sinz)/(c

x,y,z属于(0,派/2)sinx,cosx∈(0,1)对于a>0,b>0,有不等式:开根号下(a^2+b^2)≥根号2*(a+b)/2sin^2x+sin^2y+sin^2z=1cosx=开根号下

求积分计算f{|z|=pi}(z/(z+1))*(e^(2/(z+1)))dz

f(z)=z/(z+1)*e^[2/(z+1)]设I=∫(|z|=π)f(z)dz因为在区域|z|

sin z=2求解复数z

sinz=[e^(iz)-e^(-iz)]/(2i)=2e^(iz)-e^(-iz)=4i令z=x+iy,代入:e^x(cosy+isiny)-e^(-x)(cosy-isiny)=4i对比实部及虚部

若复数z满足|z|=1,求证z/1+z^2属于R

若复数z满足|z|=1,求证z/1+z^2属于R证明:令z=cost+isint=(cost,sint)z/1+z^2=cost+isint/1+cos^2t-sin^t+2sintcost=cost

已知模[(z+1)/z]=2 arg[(z+1)/z]=π/3 求z.

因为模[(z+1)/z]=2arg[(z+1)/z]=π/3所以(z+1)/z=2(cosπ/3+isinπ/3)1+1/z=1+√3i1/z=√3iz=1/[√3i]=-√3/3i

复数z满足(z-1)(2-z)=5

复数z满足(z-1)(2-z)=52z-2-z^2+z=5这里z²;相当于i²=-1则3z=5+2-1=63z=6z=2

设函数z=z(x,y)由方程2sin(x+2y-3z)=x+2y-3z所确定,求证z对x的偏导加上z对y的偏导等于1

公式输入了好半天,希望可以看懂哈!另外,可以不用辅助函数,直接利用已知等式计算求导.

复变函数 z^2*sin(1/z)的留数

已知函数只有一个奇点0用留数的定义做积分可以得出函数在0点的留数为-1/6

虚数z满足绝对值z=1,且z^2+2z+1/z

z=cost+isintcos2t+isin2t+2cost+2isint+cost-isint

若复数z满足,z*z拔+(1-2i)*z+(1+2i)z拔

设z=a+bi,则:z拔=a-bi.则:z*z拔=(a+bi)(a-bi)=a²+b²(1-2i)z+(1+2i)z拔=(z+z拔)+2i(z拔-z)=2a+4b则:a²