作一个无穷级数使其部分和Sn=1 n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:17:37
高数题,级数部分.1.判断敛散性∑n=1到无穷,n/n^2-2

从第二项开始,n/(n²-2)>1/n,从1/n发散可以知道该数列发散

求下列数项级数的部分和,判断其敛散性,并在收敛是求出其和

对于(3),前一个等比级数的公比2/7介于-1和1之间,收敛,第二个等比级数的公比5/2大于1,发散.对于(2),相当于等比数列前n项求和,只是现在n趋向于无穷大,是一个极限问题.

若级数∑an收敛,其部分和∑Sn,判断级数∑(1/Sn)的敛散性

设∑an收敛到SS,n->∞∴1/Sn->1/S≠0,∴∑(1/Sn)发散

无穷级数Un=1/(n!)-1/(n+1)!怎么求 Sn 类

很简单Sn=u1+u2+.+un=1-1/(n+1)!(两两相消即可得)

设级数的前n项部分和为sn,求一般项,sn如图

Un=S(n+1)-Sn=1/(2n+2)+1/(2n+1)-1/(n+1)=1/(2n+1)-1/(2n+2)Un的部分和=1/3-1/(2n+2)收敛于1/3再问:un不是应该等于sn-s(n-1

设正项级数∑Un发散,Sn是Un的部分和数列,证明级数∑Un/Sn^2收敛.

正项级数Sn-S(n-1)=un>0,即Sn>S(n-1),所以un/Sn^2

已知等差数列an中a1=2,其前n项和sn,若数列{Sn/n}构成一个公差为2的等差数列,则a3=?

数列{Sn/n}构成一个公差为2的等差数列,∴Sn/n=2n,∴Sn=2n^2,∴a3=S3-S2=18-8=10.

已知数列{an}是无穷等比数列,其前n项和是Sn,若a2+a3=2,a3+a4=1,则limn→∞Sn的值为(  )

∵a2+a3=2,a3+a4=1∴a1q+a1q2=2①a1q2+a1q3=1②①②联立可得,q=12a1=83∴Sn=83×[1− (12n)]1−12=163[1−(12) n

请问在高等数学的无穷级数题目中:将函数展开成泰勒级数和将函数展开成幂级数是一个意思吗?

形如∑a*(x-x0)^n的无穷级数称为幂级数,n从几开始无所谓,但一定是到∞,否则应该叫多项式;幂级数中的系数a如果是:a=f^(x0)/n!,这个幂级数就称为函数f(x)在x0处的泰勒级数;任何一

求无穷级数的敛散性 用定义和性质证明

再问:谢谢你回答了我那么多道问题但是这个书上要求用定义和性质证明再答:这个题目用定义的话显然是做不了的,,定义的方法就是把前n项求出来,但是这个式子,我们应该求不出来了,,至于性质的话,暂时想不起来,

正项无穷等比数列{an}前n项和为Sn,lim(Sn/Sn+1)=1 求公比范围

设首项为a1,公比为r,当r=1时,Sn=n(a1),此时Sn/S(n+1)的极限为1r≠1时,Sn=a1(1-r^n)/(1-r),Sn/S(n+1)=(1-r^n)/(1-r^(n+1)),极限为

关于一个无穷级数的收敛性判断,

楼主题目写错了吧.是不是:∑sin(π倍根号(n*n+a))如果是的话,那就是个经典老题了.∑sin(π倍根号(n*n+a))=∑sin(π倍根号(n*n+a)-nπ+nπ)nπ提出来,变成(-1)^

已知无穷级数的部分和Sn=[(2^n) -1]/2^n,则该级数的一般项Un

知道部分和的意思就行经济数学团队为你解答,有不清楚请追问.请及时评价.

求数项级数的部分和,判断其收敛性

等比数列An=A1*q^(n-1)的求和公式∑An=A1*(1-q^n)/(1-q)问题中的∑2/7^n相当于A1=2/7,q=1/7代入公式即得∑2/7^n=1/3[1-(1/7)^n]最后对Sn(

若级数∑un的前n项部分和Sn=2n/(n+1),则un=_______ 在线等,急求

u1=S1=1当n≥2时,Un=Sn-Sn-1=2n/(n+1)-2(n-1)/n=2/(n²+n)

一个高数无穷级数的问题?

楼主是否打错了?括号里面两个都是b[n],如果是2b[n],那当然还是收敛的.如果是a[n]+b[n],则是发散的.证明用反证法,假设∑[n=1,+∞](a[n]+b[n])收敛.定理如果级数∑[n=

级数∑[n=1,∞]Un的部分和Sn=n3;则n≥2时,Un=

S1=U1=1^3=1Un=Sn-S(n-1)=n^3-(n-1)^3=3n^2-3n+1

证明级数收敛的一个必要条件是,n趋于无穷时,其通项趋于0.

把调和级数看成一个数列,数列通项是调和级数前n项和数列收敛的充要条件是:柯西判别法(什么名字记不清楚了)对于调和级数的这个数列,满足∀ε>0,存在n>0,∀m>n,有1/n+1