假设随机变量X和Y相互独立,服从标准正态分布,求随机变量Z=X Y的概率密度.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:48:27
概率论 已知随机变量X,Y,Z相互独立,

2X~N(2,8),3Y~N(0,27),则2X+3Y-Z~N(0,36),即标准差为6,期望为0.化为标准正态W=1/6*(2X+3Y-Z)那么概率就等于P(0≤W≤1)=Φ(1)-Φ(0)=0.8

随机变量X与Y相互独立,命U=max{X,Y},V=min{X,Y},问U和V是否相互独立?

显然不独立.如果不知道U,那么V的分布就是V自身的分布,可以取值任何数.而如果知道了U,那么V在已知U的条件下的条件分布就不是V自身的分布了,因为取值不能超过U.

设X和Y是相互独立的随机变量

var(z)=Var(2x-y)=4var(x)-4cov(x,y)+var(y)=16+0+9=25标准差为开平方5

如何求二维随机变量X和Y是否相互独立?

先求x,Y的边缘分布律.如果P(X=xi,Y=yj)=P(X=xi)P(Y=yj)则相互独立.否则不独立

假设随机变量X和Y相互独立,服从标准正态分布,求随机变量Z=X/Y的概率密度.

联合密度函数f(x,y)=f(x)*f(y)=(1/2π)e^[-(x^2+y^2)/2]画图可知(X为纵坐标,Y为横坐标)是的Z

假设随机变量X和Y相互独立,服从标准正态分布,求随机变量4X+3Y与3X-4Y的联合密度函数.

x,y独立,正态分布.那么x,y的和差运算仍然是正态分布.E(4X+3Y)=4E(x)+3E(y)=0D(4x+3y)=16D(x)+9D(y)=25因此4X+3Y~N(0,25)同理3X-4Y~N(

假设X是只可能取两个值的离散型随机变量,Y是连续型随机变量,且X与Y相互独立,则随机变量X+Y是连续函数.请问本题答案中

首先F是连续分布函数,你就当他是个连续函数,连续函数相加依然是连续函数这是显然的啊

设离散型随机变量x和y相互独立,P{X=Y}=0是否成立?如何证明?

看看这个PPT的第五页答案是不一定P{X=Y}=0你很容易凑出来

已知随机变量x和y相互独立且均服从参数λ=2的指数分布,问,随机变量...

x和y相互独立且均服从参数λ=2的指数分布--->F(x,y)=F(x)*F(y)=(1-e^(-2x))(1-e^(-2y))=1-e^(-2x)-e^(-2y)+e^(-2x-2y)

设随机变量X和Y相互独立,且服从同一分布,证明P(X小于等于Y)=1/2

X,Y互相独立设X的密度函数为f(x),Y的密度函数为f(y)它们的联合密度函数为f(x,y)=f(x)f(y)f(y,x)=f(y)f(x)=f(x,y)f(x,y)关于y=x对称P(X

设随机变量X和Y相互独立,其概率分布分别为: 如图

(1)X-11Y-11/41/411/41/4(2)P(X>Y)=P(X=1,Y=-1)=1/4

“设连续型随机变量x和y相互独立,则P{X=Y}=0”如何证明

任取ε>0实数域可以表示成以下集合的并:(r-ε,r+ε),其中令r取遍所有有理数P{X=Y}=P(X=Y,Y∈R)≤∑(r∈Q)P(X=Y,r-ε

设随机变量X和Y相互独立,且X~N(3,4),(2,9),则Z=3X-Y~

3X-Y还是正态分布利用公式E(aX+bY)=+aE(X)+bE(Y)D(aX+bY)=+a²D(X)+b²D(Y)

随机变量X,Y相互独立,概率密度f(x)

f(x,y)=1/4*exp{-x-y/4}(x>0,y>0)f(x,y)=0(其他)

若X,Y是相互独立的随机变量,那么X,2Y相互独立吗

相互独立再问:那如果设f(x)为概率密度,那么f(2x)=2f(x)还是f(2x)呢?谢谢!再答:先给分吧再问:请讲一下吧,谢谢!再答:第一个再答:再答:对其求导

随机变量XY独立,则他们的连续函数G(X)和H(Y)也相互独立.

只要证明F(G(X),H(Y))关于G(X)和H(Y)偏导数等于F(G(X)),和F(H(Y))各自关于G和H的偏导数的积就可以了,只要把各自的偏导写出来,然后代一下就有答案了.这个上面不好写,不然帮

相互独立随机变量X,Y,服从正态分布N(0.1)

1fX(x)=(1/√2π)e^(-x^2/2)fY(y)=(1/√2π)e^(-y^2/2)因为x,y独立,所以联合概率密度所以fXY(x,y)=fX(x)fY(y)=(1/2π)e^[-(x^2+