光滑的水平面ab与光滑的半圆轨道相接触

来源:学生作业帮助网 编辑:作业帮 时间:2024/08/29 07:53:32
如图所示,光滑的水平轨道与光滑半圆轨道相切,圆轨道半径R=0.4m一个小球停放在水平光滑轨道上,

1、有能量守恒定律mV0^2/2=mg*2R+mV^2/2,可得到飞出时的速度为V1=3m/s.2、假设C点时,轨道作用力是小球重力的n倍,则有向心力可得到mV^2/R=mgn+mg,可得n=1.25

如图所示,一水平面与一光滑的半径为R=0.5米的竖直半圆弧道平滑连接.在水平面与圆弧的连接处放置一质量为1.0kg的小物

1)用机械能守恒就可以了:2mg2R=0.5×2mv^2易求v=2√5m/s^22)先用动量守恒定律:mV0=2mv求出V0=4√5m/s^2然后能量守恒:Fs-μmgs=0.5×mV0^2求出s=1

如图所示,光滑水平面AB与光滑竖直面内的半圆形导轨在B衔接

①物块恰能完成半圆周运动到达C点mg=mv^2/R由平抛运动规律2R=1/2gt^2x=vt联立解方程得x=2R由能量守恒得②弹簧对物体的弹力做的功WW=EP=mg2R+1/2mV^2=5mgR/2③

如图所示,AB为光滑的水平面,BC是倾角为α的足够长的光滑斜面(斜面体固定不动).AB,BC间用一小段光滑圆弧轨

(1)机械能守恒,因为链条与斜面间无摩擦,无机械能损失(2)设链条质量为m,则L-a段质量为m1=(L-a)/L*m,a段质量为m2=a/L*m以AB水平面为0势能面,则起始时,L-a段重心在0处,a

如图,abc是光滑的轨道,其中ab是水平的,bc是位于竖直平面内与ab相切的半圆,半径R=0

(1)因为光滑所以用能量守恒,题中没有初速度和质量无法求但可以求极限值,用重力充当向心力MG=MV2比R(2)有力则说明有初速度(3)题中没有碰撞啊?

质量均为m的物体a和b在水平力f作用下,一起沿光滑的水平面运动,ab接触面光滑 且与地面夹角为60度,求ab一

对A进行受力分析.AB能一起运动时受到水平力F,重力mg,和B对A的支持力N,地面对A的支持力N'的作用共四个力的作用.自己画受力分析图,进行正交分解,AB一起运动不分开的临界值就是N向上的分力与重力

如图所示,半径R=0.40m的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平面地面相切与圆环的端点A.一质量m=0.1

Va^2-Vo^2=2(-a)S,因在水平地面上减速,故加速度A=-a=-3.0m/s^2Va=(Vo^2-2aS)^1/2=(7*7-2*3.0*4.0)^1/2=5m/sA-->B,机械能守恒(1

如图所示,abc是光滑的轨道,其中ab是水平的,bc为竖直平面内的半圆且与ab相切,半径R=0.3m.zhiliangm

1、(1)分别以v1和v2表示小球A和B碰后的速度,v3表示小球A在半圆最高点的速度,则对A由平抛运动规律有:L=v3t和h=2R=gt2/2解得:v3=2m/s.对A运用机械能守恒定律得:mv12/

如图所示,光滑绝缘体AB与水平面的家教时37,上面套有一个自由移动的质量为m,电荷量为q的金属环,当存在

由于开始时光滑杆上的电荷刚好静止,所以向下的重力与向上的电场力平衡,即有:mg=qE当在A点放置电荷且匀强电场E方向改为向下后,粒子受到的重力和电场力都向下,这两力的合力为2mg,速度最大时对应的位置

如图1所示,“”型木块放在光滑水平地面上,木块的水平表面AB粗糙,与水平面夹角θ=37°的表面BC光滑.木块右侧与竖直墙

(1)分析滑块受力,由牛顿第二定律得:得:a1=gsinθ=6m/s2通过图象可知滑块在斜面上运动时间为:t1=1s由运动学公式得:L=12a1t12=3m(2)滑块对斜面的压力为:N1′=mgcos

如图所示,光滑的U形导电轨道与水平面的夹角为θ,空间有一范围足够大、方向竖直向下的匀强磁场,一质量为m的光滑裸导体棒ab

导体棒的受力如图.根据左手定则,知电流的方向由a到b.所以只有当d为正极、c为负极时ab棒才可能静止.由平衡条件可得F磁=mgtanθ.答:电池d为正极,所受的磁场力大小为mgtanθ.

光滑水平面AB与一个光滑的1/4竖直圆弧轨道BC相连接,质量m=2kg的小物块,在水平向右的外力F=4N的作用下...

外力F对小物块做的功W=FS=4*4=16JW=1/2mv^2小物块到达B点时速度v=√(2W/m)=√(2*16/2)=4m/smgR=W圆弧轨道的半径R=W/(mg)=16/(2*10)=0.8m

光滑水平面AB与竖直面内的半圆形导轨在B点衔接,

解(1)物块在B点时由牛顿第二定律得NB-mg=(mVB²)/R①NB=7mg②由机械能守恒知W=½mVB²=3mgR(2)由牛顿第二定律知NC+mg=mVc²

如图所示,光滑水平面 与竖直面内粗糙的

恰好到达C点就是说速度为V=根号gR你说的到达C点为0吧?这个想法是错误的恰好到达最高点的问题这个跟绳子拉球的问题相同(V=根号gR)和杆子圆管问题不同(V=0)就点到这了中间都是计算过程这里不好打出

如图所示,光滑水平面AB与竖直面内的半圆形导轨在B点相切,半圆形导轨的半径为R.一个质量为m的物体将 光滑水平面AB与竖

当它经过B点进入导轨瞬间对导轨的压力为其重力的8倍即8mg=mvb^2/Rvb=2√2gR(1)由能量守恒得物体在A点时弹簧的弹性势能Ep=1/2mvb^2=4mgR(2)物体恰好能到达C点,此时向心

如图所示,光滑的水平面AB与光滑的半圆形轨道相接触,直径BC竖直,圆轨道半径为R.一个质量为m的物体静止在A处,AB=2

在半圆的最高点C处:向心力F=mg+P压力=MV²/R因为,P最小=0所以mg=MV²/R可得圆临界速度V1=√(gR)①根据机械守恒定律可得2mgR+(MV1²)/2=

如图所示,一球放在光滑水平面AC上,并和AB光滑面接触,球静止不动,求球受的弹力.

如果没有其他外力的话,那么球就只受一个大小和重力相等的向上的弹力,受力面在AC上,B点不受力再问:球与AB接触,为什么会没有弹力呢?怎样证实呢?再答:小球静止,就代表受力平衡,小球自身的重力是垂直向下

半径为R的竖直光滑半圆轨道低端与光滑水平面相接,一小球以速度V0沿水平面向左运动,为使小球在圆轨道上运动时不脱离圆轨道,

1/2mv0^2=1/2mv^2+mg*2Rv^2=v0^2-4gR当小球在最高点时速度最小临界点时由重力提供向心力,速度大于临界点时小球对圆轨有压力,由圆轨弹力与重力共同提供向心力mg=mv^2/R

竖直平面内的轨道ABCD由水平轨道AB与光滑的四分之一圆弧滑道CD组成,AB恰与圆弧CD在C点相切,轨道放在光滑的水平面

注意紧扣功的定义,功的定义就是力乘以力的方向的位移,而不是“相对位移”.这个概念很多学生都会搞混!再问:但摩擦力不也给板做正功吗?再答:注意你的这个方程是选取的什么研究对象。选的哪个研究对象,就对哪个