关于x的一元二次方程kx²-2x 3=0有实根,则k的取值范围是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:16:52
(1)要使方程kx²-2x+1=0有两不等实根,则有根判别式Δ>0,且k≠0即4-4k>04k
不存在.因为方程有不等的实根,所以(k+2)^2-4*k*k/4>0,即k>-1要使两个实数根x1,x2倒数和为0,即1/x1+1/x2=0,解得x1+x2=0,因为x1+x2=(-k-2)/k=0所
令f(x)=x^2-kx+2k-3结合函数图像可知:若两个根满足一根大于1,一根小于1,那么必须f(1)
K^2-4*(-3)>0;则有K^2+12>0;即无论K为何实数,不等式恒成立;则方程有两个不相等的实数根!
kx²-2x²-2x=x(k-2)x²-3x=0因为题目说此式为一元二次方程因此k-2≠0因此k≠2
x=1、x=(k-3)/k
x^2-2kx+(1/2)k-2=0x1+x2=kx1x2=(k-2)/2x1^2-2kx1+2x1x2=(2-k)/2+2*(k-2)/2=(k-2)/2=5k=12
1.先求△,△=(-3(k-1))^2-4×k×(2k-3)=9k^2-18k+9-8k^2+12k=k^2-6k+9=(k-3)^2显然,只要k≠3,方程就有两个不相等的实数根.2.x=(3(k-1
令f(x)=x^2-kx+2k-3结合函数图像可知:若两个根满足一根大于1,一根小于1,那么必须f(1)
求?再问:△大于等于小于0时再答:2k²-4(k-1)(k-3)大于小于等于0。大于时k²-4k+3大于0,然后配方k²-4k+4大于1,(k-2)²大于1,k
1.有两个不相等的实数根:(2k+1)²-4×k×k=4k+1>0得k>-1/42.有两个相等的实数根:k=-1/43.没有实数根:k
kx²-K(x+2)=x(x+1)+6kx²-Kx-2k=x²+x+6kx²-x²-kx-x-2k-6=0(k-1)x²-(k+1)x-2k
1.△=(2k+1)²-4×(4k-3)=4k²+4k+1-16k+12=4k²-12k+13=4(k²-3k)+13=4(k-3/2)²-9+13=
关于x的一元二次方程kx^2-4x+3=0有两个实数根,∴﹛k≠0(-4)²-4×k×3≥0k≤4/3∴k≤4/3且k≠0∴k的最大值=4/3
(1)Δ=4-4k(2-k)≥01-2k+k²≥0(k-1)²≥0恒成立所以k可取任意实数.(2)x=(-2±2(k-1))/(2k)x=(-1±(k-1))/kx1=(k-2)/
解题思路:一元二次方程解题过程:答:选B把x=0带入得到。m2-1=0m=1或m=-1当m=1时候,二次项系数为0,此时便不是一元二次方程,故舍去m=1.所以选B同学您好,如对解答还有疑问,可在答案下
一元二次方程则k≠0判别式=[-(k+2)]^2-4*k*2k>=0k^2+4k+4-8k^2>=07k^2-4k-4
已知关于X的一元二次方程x^2+kx-1=0(1)求证:方程有两个不相等的实数根证明:(b²-4ac)=k²+4>0(2)设方程的两根分别为x1,x2,且满足x1+x2=x1*x2
1)将x=1代入方程得:1+2k+k^2-1=0k(k+2)=0得k=0或-22)△=4k^2-4(k^2-1)=4>0因此方程总有2个不等实根
因为 kx^2--2x+k^2--k=0是关于x的一元二次方程, 所以 只要二次项的系数k不等于0就行了, 所以 k的值是:k不等于0.再问:能不能再详细点?再答:我的回答已经是很详细的了。你看不