分别以AB.BC.AC为边作等边三角形,连接DF,EF
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:59:03
答案是相等.延长EA交过G点的直线于O,且GO垂直EA.作CK垂直AB于K所以角BAO=90度又因为四边形ACFG是正方形.所以角CAG=90度,且CA=AG(下面有用)因为角CAG=角BAO所以角C
过A点分别做AG垂直BE,垂足为G,AH垂直FC,垂足为H.因为MD垂直BC,AG垂直BE,所以可以得到AGBD为矩形,AHDC为矩形.又因为三角形ABE,ACF为等腰直角三角形,所以角ABD=角AC
连接BM,CM∵BC为直径,AD⊥BC∴∠HDB=∠HEA=RT∠∴∠HBD=∠CAD又∠HDB=∠ADC=RT∠∴△ADC∽△BDH∴DB/DH=DA/DC,即DB*DC=DH*DA又∵BC为直径,
过A作IJ平行于BC,分别从G、E向IJ引垂线,交点为I、J.角GAM+角CAH=角GAM+角GAI=90度,所以角CAH=角GAI角AIG=角AHC=90度,AC=AG所以△AHC全等于△AIG,所
图中的黑色和红色的钝角都是直角加角BAC,则黑色角=红色角用边角边证图中的黑三角形和红三角形全等,得到CE=BF角1与角3互余,角2=角1,角3=角4,所以角2与角4互余,CE垂直BF用三角形中位线性
如图:三角形ABD,三角形ACE,三角形BCF都是等边三角形首先我们来证明DAEF为平行四边形角DBF=60度-角FBA=角ABC而DB=AB, BF=BC三角形DBF全等于三角形ABC所以
作AG垂直于BC,交BC于G,设AB=a,BC=b,CA=c,根据海伦公式S=根号下(P(P-a)(P-b)(P-c))S三角形BCE+S三角形ACF=((根号3)/4)*b^2+((根号3)/4)*
(1)证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,又∵CA=CD,CE=CB,∴△ACE≌△DCB.(2)△AMC∽△DMP.理由:∵△ACE≌△DCB
∵∠BAC=90°,AB=4cm,AC=3cm,BC=5cm,∴以AB为直径的半圆的面积S1=2π(cm2);以AC为直径的半圆的面积S2=98π(cm2);以BC为直径的半圆的面积S3=258π(c
再问:为什么那个角等于九十度他没说那是中点不能直接说再答:圆直径所对的角是直角再答:所以三线合一再问:哦哦谢谢再问:哦哦谢谢
方法1:作MH⊥BC于H;方法2:作AH⊥BC于H;方法3:作圆ODE交BC于另一点H.都用同一法证A、M、H三点共线. 证明:1.若AB=AC,结论显然成立;2.若AB≠AC,作作圆ODE
提示:作BP⊥AM于P,作CQ⊥AM于点Q△BAP≌△FAN,△ACQ≌△AEN则BP=CQ=AN再证明△BPM≌△CQM则BM=CM
选择:D阴影面积=整圆-S△ABC=16π-12√7再问:��˵D����˵C�������ĸ���再答:S��Բ��16�У�S��ABC=12��7��Ӱ���S��Բ-S��ABC=16��-1
证明:做AB,AC,的中点记为G,H.连接DG,GE,EH,HF.则DG,GE,EH,HF均为三角形的中线由三角形中线定理的DG平行且等于1/2AM=1/2AB=EHDG=EH同理,GE=FH在三角形
可以证明CD⊥BG,因为CD∥MH,BG∥NH.设CD交BG于K,证明∠BKC=90°,而∠BKC=∠ABG+∠ACD+∠BAC.因为△DAC≌△BAG(第一个小题的证明会得到这个结论),所以∠ACD
(1)在三角形ACE和三角形BCD中:AC=CDCE=CB∠ACE=∠BCD所以三角形ACE和三角形BCD全等,所以BD=AE,且∠CAE=∠CDB(2)在三角形ACM和三角形NCD中:∠CAE=∠C
以下都是向量:AM*EG=(AB+BM)*(AG-AE)=(AB+1/2BC)*(AG-AE)=(AB+1/2(AC-AB))*(AG-AE)=1/2(AB+AC)*(AG-AE)=1/2(AB*AG
CE以点C为旋转中心顺时针方向旋转60°后到BAC以点C为旋转中心顺时针方向旋转60°后到D得到的三角形为CBD三角形CBD全等三角形ACE角EAC=角BDC,∠AOD=角EAC+∠DBC=∠BDC+
∠AFB与∠ACD的关系为:∠AFB+∠ACD=180° 理由:∵CA=CD,CB=CE,∠ACD=∠BCE