分别以AB.BC.AC为边作等边三角形,连接DF,EF

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:59:03
如图,在三角形ABC中,以AB、AC为边分别向外作正方形ABDE和正方形ACFG,连结EG、BC,.

答案是相等.延长EA交过G点的直线于O,且GO垂直EA.作CK垂直AB于K所以角BAO=90度又因为四边形ACFG是正方形.所以角CAG=90度,且CA=AG(下面有用)因为角CAG=角BAO所以角C

已知在三角形ABC中,以AB、AC为直角边,分别向外作等腰直角三角形ABE、ACF,连接EF,过点A作AD垂直BC,垂足

过A点分别做AG垂直BE,垂足为G,AH垂直FC,垂足为H.因为MD垂直BC,AG垂直BE,所以可以得到AGBD为矩形,AHDC为矩形.又因为三角形ABE,ACF为等腰直角三角形,所以角ABD=角AC

如图,以三角形ABC的边BC为直径作圆O分别交AB,AC于点F点E(急 急)!

连接BM,CM∵BC为直径,AD⊥BC∴∠HDB=∠HEA=RT∠∴∠HBD=∠CAD又∠HDB=∠ADC=RT∠∴△ADC∽△BDH∴DB/DH=DA/DC,即DB*DC=DH*DA又∵BC为直径,

以△ABC的边AC,AB为一边,分别向三角形的外侧作正方形ABDE,ACFG,连结EG,过点A作AH⊥BC

过A作IJ平行于BC,分别从G、E向IJ引垂线,交点为I、J.角GAM+角CAH=角GAM+角GAI=90度,所以角CAH=角GAI角AIG=角AHC=90度,AC=AG所以△AHC全等于△AIG,所

已知,分别以AB/AC为边向三角形ABC外作正方形ABDE,M,N,P,Q分别是EF,BC,EB,FC的中点,证明MPN

图中的黑色和红色的钝角都是直角加角BAC,则黑色角=红色角用边角边证图中的黑三角形和红三角形全等,得到CE=BF角1与角3互余,角2=角1,角3=角4,所以角2与角4互余,CE垂直BF用三角形中位线性

△ABC中,分别以AB,AC,BC为边在同侧作等边三角形ABD,BCF,ACE

如图:三角形ABD,三角形ACE,三角形BCF都是等边三角形首先我们来证明DAEF为平行四边形角DBF=60度-角FBA=角ABC而DB=AB, BF=BC三角形DBF全等于三角形ABC所以

SOS!已知三角形ABC,分别以AB,AC,BC为边作正三角形ABD,正三角形BCE,正三角形ACF.且角ACB=60度

作AG垂直于BC,交BC于G,设AB=a,BC=b,CA=c,根据海伦公式S=根号下(P(P-a)(P-b)(P-c))S三角形BCE+S三角形ACF=((根号3)/4)*b^2+((根号3)/4)*

(2011•济南)如图,点C为线段AB上任意一点(不与A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和等

(1)证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,又∵CA=CD,CE=CB,∴△ACE≌△DCB.(2)△AMC∽△DMP.理由:∵△ACE≌△DCB

如图,分别以直角三角形两直角边AB、AC及斜边BC为直径向外作半圆(以BC为直径的半圆过点A),∠BAC=90°,AB=

∵∠BAC=90°,AB=4cm,AC=3cm,BC=5cm,∴以AB为直径的半圆的面积S1=2π(cm2);以AC为直径的半圆的面积S2=98π(cm2);以BC为直径的半圆的面积S3=258π(c

已知,如图,在三角形ABC中,AB=AC。以腰AB为直径作半圆O,分别交BC,AC于点D,E 问

 再问:为什么那个角等于九十度他没说那是中点不能直接说再答:圆直径所对的角是直角再答:所以三线合一再问:哦哦谢谢再问:哦哦谢谢

以△ABC的边BC为直径作半圆,与AB、AC分别交于点D和E.分别过D、E作BC的垂线,垂足依次为F、G.线段DG和EF

方法1:作MH⊥BC于H;方法2:作AH⊥BC于H;方法3:作圆ODE交BC于另一点H.都用同一法证A、M、H三点共线. 证明:1.若AB=AC,结论显然成立;2.若AB≠AC,作作圆ODE

初中证明题说下思路锐角三角形ABC,分别以AB、AC为边作正方形,连结EF,AN⊥EF,M为BC边上的点,求证BM =

提示:作BP⊥AM于P,作CQ⊥AM于点Q△BAP≌△FAN,△ACQ≌△AEN则BP=CQ=AN再证明△BPM≌△CQM则BM=CM

图,在△ABC中,AB=AC,AB=8,BC=12,分别以AB、AC为直径作半圆,则图中阴影部分的面积是( )

选择:D阴影面积=整圆-S△ABC=16π-12√7再问:��˵D����˵C�������ĸ���再答:S��Բ��16�У�S��ABC=12��7��Ӱ���S��Բ-S��ABC=16��-1

如图,已知三角形abc是锐角三角形分别以ab,ac为边向外侧作等边三角形abm和等边三角形can.DEF分别是mb,BC

证明:做AB,AC,的中点记为G,H.连接DG,GE,EH,HF.则DG,GE,EH,HF均为三角形的中线由三角形中线定理的DG平行且等于1/2AM=1/2AB=EHDG=EH同理,GE=FH在三角形

如图,已知锐角三角形ABC,H是BC中点,分别以AB、AC为边向外作正方形ABED、ACFG,MN分别是对角线BD、CG

可以证明CD⊥BG,因为CD∥MH,BG∥NH.设CD交BG于K,证明∠BKC=90°,而∠BKC=∠ABG+∠ACD+∠BAC.因为△DAC≌△BAG(第一个小题的证明会得到这个结论),所以∠ACD

已知c是线段ab上的一点,分别以bc,ac为边作等边三角形acd和三角形cbe.

(1)在三角形ACE和三角形BCD中:AC=CDCE=CB∠ACE=∠BCD所以三角形ACE和三角形BCD全等,所以BD=AE,且∠CAE=∠CDB(2)在三角形ACM和三角形NCD中:∠CAE=∠C

如图,分别以三角形ABC的边AB、AC为边向三角形外作正方形ABDE和正方形ACFG,M为BC的中点.

以下都是向量:AM*EG=(AB+BM)*(AG-AE)=(AB+1/2BC)*(AG-AE)=(AB+1/2(AC-AB))*(AG-AE)=1/2(AB+AC)*(AG-AE)=1/2(AB*AG

已知,如图,点C是AB上一点,分别以AC,BC为边,在AB的同侧作等边△ACD和△BCE

CE以点C为旋转中心顺时针方向旋转60°后到BAC以点C为旋转中心顺时针方向旋转60°后到D得到的三角形为CBD三角形CBD全等三角形ACE角EAC=角BDC,∠AOD=角EAC+∠DBC=∠BDC+

已知点C为线段AB上一点,分别以AC,BC为边在线段AB同侧作△ACD和△BCE,

∠AFB与∠ACD的关系为:∠AFB+∠ACD=180°   理由:∵CA=CD,CB=CE,∠ACD=∠BCE