则A必为非奇异矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:30:34
A非零对称,那么对应的二次型Q不为0,所以存在e,Q(e)不为0.然后把e补成一个基底E,再令C是转换两个基底的矩阵(不知道中文怎么讲),那么C可逆且tCAC的(1,1)=Q(e)不等于零.
奇异矩阵也就是可逆矩阵,也就是|A|≠0,A存在A逆,矩阵相似就是存在P使得,P逆×B×P=A,即称A与B相似.本题有:A逆×AB×A=BA,所以AB与BA相似
1用初等变换将他变成三角矩阵,或三角阵的换行或换列形式,看他是不是满秩的.满秩,就是非奇异.此外,也可以用“拟初等变换”,只要是不改变他的秩的变换,都行.2有时可以计算行列式.
AB=ABAA^(-1)=A(BA)A^(-1)
A(x-y)=0,于是非零向量x-y是方程Ax=0的一个非零解.书上有定理,此时A必非奇异再问:什么定理。你能说说吗?再答:应该是奇异矩阵。在方阵的条件下,齐次线性方程组Ax=0有非零解的充分必要条件
AB~A^{-1}(AB)A=BA
因为A^2-A+E=0所以A(A-E)=-E所以A可逆,且A^-1=-(A-E)=E-A
对A做谱分解A=QDQ*,显然这一分解也可视作奇异值分解.
矩阵A的行列式不等于零或非奇异,A就为满秩矩阵,这就是满秩矩阵的定义.
提示:||A||_F^2=trace(A^H*A)再问:太深奥了能详细点吗再答:1.trace(X)表示方阵X对角元的和,如果不知道的话有必要重新学线性代数2.直接把A^H*A乘出来,看一下trace
C=010100001这题看起来吓人,仔细观察A,B的左上角的2阶子式,就是交换了行与列,故有C
A非奇异,B满秩都是说可逆,故AB可逆,标准形是E,即单位矩阵
注意到A^(-1)B奇异,于是A^(-1)B必有零特征值,E-A^(-1)B必有1特征值,于是||E-A^(-1)B||>=1,故1
(C)正确可逆矩阵(即非奇异矩阵)可表示成初等矩阵的乘积初等矩阵乘矩阵A相当对A进行初等变换而初等变换不改变矩阵的秩所以(C)正确.
用反证法.若A不奇异,那么A²=A可推知A(A-I)=0,即A-I=A^(-1)0=0,得A=i,矛盾!所以A奇异
等价的定义:A~B,A可以经若干次初等变换得到Bn阶奇异矩阵,就是行列式等于零的矩阵,而非奇异就是行列不为零(等价于可逆)A为可逆矩阵的一个充要条件是A与E等价.等价是等价关系,有自反性,对称性,和传
PQ=A+aa^Ta+ba-a^TA*A+|A|a^T-a^TA*a+|A|b=A+aa^Ta+ba-|A|a^T+|A|a^T-a^TA*a+|A|b=A+aa^T(b+1)a0-a^TA*a+|A
这是个错误结论试想,B是零矩阵,怎么会有R(AB)=R(A)!可逆矩阵才不改变乘积矩阵的秩
稍等,上图...再答: