.设是来自两个参数指数分布的一个样本. 其中,求参数和的矩估计.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 23:45:14
设随机变量X服从(1,2)上的均匀分布,在X=x条件下,随机变量Y的条件分布是参数为x的指数分布.证明:XY服从参数为1

f(x)=1,1≤x≤2f(y|x)=xe^(-xy),y≥0f(y|x)=f(x,y)/f(x)=f(x,y)=xe^(-xy)令z=xy,z≥0F(z)=P(Z≤z)=P(XY≤z)=∫(1,2)

设X1 X2 ...Xn为来自总体X的样本,总体X服从参数为λ的指数分布,即X~f(x,λ)=λexp(-λx) 求X(

xi独立同分布F1x=MAX(x1,x2,.)=(f(x,λ))^n,然后根据期望的定义求相应的积分就是了,但是要注意指数分布当x《0时f=0

随机变量X服从参数为λ的指数分布,那X+a(a为一常数)服从什么分布,概率密度函数的形式是怎样?

经济数学团队帮你解答,有不清楚请追问.满意的话,请及时评价.谢谢!

设随机变量X=e^y服从参数为e的指数分布.求随机变量Y的概率密度函数

先令Y=lnXF(y)=P{Y≤y}=P{lnX≤y}=P{X≤e^y}=Fx(e^y)=1-e^(-e^(y+1))此为Y的分布函数f(y)=F`(y)=e^(y+1-e^(y+1))你确定参数是e

设X服从参数设X服从参数为λ=1的指数分布,求Y=X^2的概率密度.

X的概率密度函数:fX(x)={e^-x,x>0{0,x0时,有FY(y)=P{X^2≤y}=P{-√y≤x≤√y}=∫(-√y→√y)fX(x)dxfY(y)=d[FY(y)]/dy=d[∫(-√y

设随即变量X服从参数为2的指数分布,则Y=e^x的概率密度为_____.

答案是2/(Y*Y*Y)求函数的概率密度有一个公式,如果Y(X)的导数是非0的,则可以用这个公式.这个题Y关于X的导数是大于0的,所以:(1)求Y关于X的函数的反函数,此题Y的反函数就是:Y的对数;(

设随机变量X服从参数λ 为的指数分布,则概率 P(X>EX)?

X服从参数λ为的指数分布,则:EX=1/λ,X有分布函数:F(x)=1-e^(-λx),x>=0;于是P(X>EX)=1-P(X

设随机变量x服从参数λ=1的指数分布,求Y=lnx的概率密度

经济数学团队帮你解答,有不清楚请追问.请及时评价.

设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,Y

大数定律:一组相互独立且具有有限期望与方差的随机变量X1,X2,…,Xn,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值.这里X21,X22,…,X2n满足大数定律的条件,且EX2i

设随机变量X服从参数为λ的指数分布,则P{X>DX}

由题设,X服从参数为λ的指数分布,知:DX=1λ2,λ>0,于是:P{X>DX}=P{X>1λ}=∫+∞1λλe−λxdx=−e−λx| +∞1λ=1e.

概率指数分布家设随机变量X服从参数为λ的指数分布,且X落入区间(1,2)内的概率达到最大,则λ=?

X落入区间(1,2)内的概率P=积分(1-->2)λe^(-λx)dx=e^(-λ)-e^(-2λ)概率达到最大-->dP/dλ=0-->λ=ln2

设随机变量X服从参数为3的指数分布,试求:

(1).f(x)=3e^(-3x),x>0;f(x)=0,其他.y1时,FY(y)=P(Y

设随机变量服从参数为5的指数分布,则它的数学期望值为多少

0.21/λ=1/5=0.2根据0—1分布,数学期望p方差p(1-p);二项分布(贝努里概型),数学期望np方差np(1-p);泊松分布,数学期望λ方差λ;均匀分布,数学期望(a+b)/2方差[(b-