判断级数的收敛性题

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:36:28
判断级数收敛性. 

通项不趋于零,级数发散.

级数收敛性的一道证明题

收敛半径就是R1.对任意x满足|x|其收敛域包含(-R1,R1),故收敛半径≥R1.对任意x满足R2>|x|>R1,由∑bn·x^n的收敛半径为R2,有lim{n→∞}bn·x^n=0.而由∑an·x

判断级数收敛性 

/>很显然,这是调和级数的子级数,调和级数是发散的,该级数必然也是发散的.

判断级数收敛性, 

a>1时,通项a[n]趋于1不为0发散;a=1时,通项a[n]=1/2,不为零,发散;0

判断正项级数的收敛性:

级数的加项极限是1,不满足收敛的必要条件(加项趋于0),所以该级数发散.

解高数 判断级数收敛性

先排除通项不趋于0的情况,再判断剩下情况级数的绝对收敛性,利用Cauchy判别法:再答:再答:(´・_・`)?再答:亲,拜托你不要无视我啊T_T你好歹告诉我下对错

请问判断级数收敛性一题

考虑sin(π√(n^2+c^2))=(-1)^nsin(π√(n^2+c^2)-nπ)sin(π√(n^2+c^2)-nπ)=sin[πc^2/(√(n^2+c^2)+n)]πc^2/(2n)交错级

下图级数收敛性如何判断

都不收敛的,应用级数收敛的必要条件,即通项收敛到零,第一个级数通项根本不收敛,第二个级数通项收敛到1.所以一个都不收敛.这些基础的定理,命题还是要记住,方便你做选择题.

判断下列级数的收敛性,并写出判断过程

2sin(π/12)*sin(nπ/6)=cos{(2n-1)π/12}-cos{(2n+1)π/12}所以Sn={1/2sin(π/12)}*{cos(π/12)-cos(2n+1)π/12}cos

判断级数的收敛性判断级数∑1/n^+a^收敛性?

这个是收敛的,1/n^+a^<1/n²<1/n(n-1)=1/(n-1)-1/n,n≥2,所以0<∑1/n^+a^<1/(1+a^)+1-1/n,当n趋于无穷,有0<∑1/n^+a^<1/(

关于一个无穷级数的收敛性判断,

楼主题目写错了吧.是不是:∑sin(π倍根号(n*n+a))如果是的话,那就是个经典老题了.∑sin(π倍根号(n*n+a))=∑sin(π倍根号(n*n+a)-nπ+nπ)nπ提出来,变成(-1)^

高数 级数收敛性的题

由交错级数的莱布尼茨判别法,一是证明f(x)=lnx/x单调减(求导数,导数小于零),二是证明lnn/n极限为零(洛必达法则).结论是级数收敛.再问:应该是绝对收敛对嘛再答:不是绝对收敛,因为其通项的

两个级数收敛性的证明题

1\当n足够大时有ln(lnn)/lnnln(lnn)lnne^2时e^2lnn1/n^2>1/(lnn)^lnn∑1/(lnn)^lnn收敛

怎么判断级数的收敛性?

1.先看级数通项是不是趋于0.如果不是,直接写“发散”,OK得分,做下一题;如果是,转到2.2.看是什么级数,交错级数转到3;正项级数转到4.3.交错级数用莱布尼兹审敛法,通项递减趋于零就是收敛.4.

这两个级数的收敛性怎么判断,

首先明确一个定理:若Sn=1^q+2^q+...n^q当且仅当q

一道判别级数收敛性的题,如图所示

乍一看题目,通过a_(n+1)/a_n,Raabe判别法都行不通:所以考虑简单一点的判别法——比较判别法,放缩如下:(n>3时)由于∑1/(n+2)发散,所以原级数发散.

判断此级数的收敛性 

是条件收敛的.请采纳,谢谢!再问:n=1或者2的时候怎么证?再答:去掉前几项不影响收敛性,不需要证明。再问:谢谢~