单位矩阵的基础解系是什么
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 05:57:39
正交矩阵.当然,仅仅是指方阵而言.正交矩阵的特点:行列式的绝对值是1,行和列都是与矩阵阶数相同维数的向量空间的标准正交基,作为线性变换不改变长度和内积,等等.
x1x2...xn为基础解系的基础解则a1x1+a2x2+...anxn为其次方程的通解a1a2...an属于R
基础解系所含向量的个数等于未知量的个数n减去矩阵A的秩.与行数列数没有关系的再问:为什么未知量的个数就是矩阵的列向量呢?再答:你把方程怎么样写成的矩阵再答:你自己想想
由已知,|A*|=0,A*(1,1,...,1)^T=3(1,1,...,1)^T所以r(A*)=1所以r(A)=n-1所以AX=0的基础解系含1个向量.因为AA*=|A|E=0所以3A(1,1,..
战略模型介绍:波士顿(BCG)矩阵法 1、模型介绍 制定公司层战略最流行的方法之一就是BCG矩阵.该方法是由波士顿集团(BostonConsultingGroup,BCG)在上世纪70年代初开发的
A=1111243135244635r2-2r1,r3-3r1,r4-4r11111021-102-1102-11-->1111021-100-220000所以r(A)=3所以AX=0的基础解系含n-
|A-λE|=(2-λ)^2×(4-λ)λ=2,2,4λ=2,解(A-2E)X=0得基础解系,p1=(1,0,0)^Tp2=(0,-1,1)λ=2对应的特征向量p=k1p1+k2p2(k1,k2不同时
n是未知数的个数,也就是列向量的个数,你对系数矩阵A进行初等变换,你会得到一些线性相关的行向量,那些行向量也就是“随机变量”,能任意取值的,有多少个“随机变量”就有多少个基础解系的向量,也就是用总的向
再问:谢谢。但是怎么确定α1、α2分别取1和0的呢?再答:这种题有一个固定的套路,当你求出x1.x2.x3的函数关系时,一般就是分别取(1,0,x3)和(0,1,x3)再问:再问:谢谢。那这个题的基础
向量组是AX=0的基础解系须满足:1.线性无关2.向量组中向量的个数=n-r(A)再问:那是不是所有满足你说的基础解系都是AX=0的解啊?再答:矩阵都是AX=0的解??什么意思?
把矩阵求阶梯型第二行加到第一行第三行加到第四行第二行的-1倍加到第三行变成0000三行为0有3个自由未知量所以ζ1=(2,1,1,0)1-1-11ζ2=(0,1,0,1)0000ζ3=(0,0,1,1
答案是错的,取k=0试试一般地,做完Gauss消元之后,如果系数矩阵的秩=增广矩阵的秩,则有界;否则无解有解时,如果系数矩阵的秩=变量的个数,则有唯一解,这时可直接从约化后的方程解出唯一解;如果系数矩
基础解系没有必要正负,只需一个向量就可,有正负意思应该是正负都可成为基础解系.后面的单位向量当然都应有正负.再问:哦谢谢了,那请问考试的时候只写正负的其中一个有关系吗会扣分吗还有就是什么时候应该写正负
(1,0,0,1)应该是(1,0,0,-1)两个都可以前者所得是一个正交的基础解系在解决正交对角化问题时可避免基础解系的正交化这需要好好观察方程,有一定技巧再问:那请问如何求出的上面第一个答案的三个呢
对某个特征值λ,解齐次线性方程组(A-λE)X=0
E的逆矩阵是它本身
x1+0x2+0x3=10x1+x2+0x3=30x1+0x2+x3=5系数矩阵为E且解为1,3,5是这意思吗?这有点.有问题请追问是你要的就采纳吧
A是一个n阶方阵,r(A)=n-1所以AX=0的基础解系的解向量的个数为1又A的每一行元素加起来均为1则A(1,1,...,1)^T=(1,1,...,1)^T所以x=(1,1,...,1)^T是AX
我十分怀疑你问的是正交矩阵..单位阵转置还是单位阵正交阵转置是它的逆