双曲抛物面图形被柱面所截的面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 16:57:10
求旋转抛物面面积(重积分的应用)

即底半径为4,高为4的正圆锥的侧面积=2π×4×√﹙4²+4²﹚/2=16√2π﹙面积单位﹚这是初中的几何题,与旋转抛物面无关.除非你是x=y².再问:但是确实在我高等数

已知椭圆抛物面z=x^2+y^2,求用任意垂直于Z轴的平面截得的图形面积是πz吗?

这是一个旋转抛物面,垂直于z轴的截平面上的截口都是圆,面积没错,就是πz

求旋转抛物面z=x2+y2被平面z=1所截下的有限部分的面积

z=1与z=x^2+y^2联立:x^2+y^2=1,z=1.这个曲线为以(0,0,1)圆,其中半径为1.所以面积S=πr^2=π

一个z=x^2+y^2的旋转抛物面被x+y+z=1这个平面切出的图形在xoy平面投影面积怎么求

z=1-x-y代入z=x^2+y^2消去z即x^2+y^2=1-x-y所以投影为:{x^2+y^2+x+y-1=0{z=0再问:这个投影方程我知道的是说要算这个投影的面积再问:可能我问的不太好你看下原

求锥面z=√(x^2+y^2)被柱面z^2=2x所割下部分的曲面面积

不需要那样做由z=√(x^2+y^2)和z^2=2x可得曲面在xoy平面的投影为Dxy:(x-1)^2+y^2≤1dz/dx=x/√(x^2+y^2),dz/dy=y/√(x^2+y^2)√((dz/

作出曲面 z=xy被柱面x^2+y^2=1所围部分的图形,并求其面积.写出MATLAB程序

应该先绘制曲面z=xy.matlab程序如下:x=-30:1:30;y=-30:1:30;n=length(x);[xb,yb]=meshgrid(x,y);zb=xb.*yb;%要用xb,yb而不是

设Ω由平面z=0,y=x,柱面y=x²和抛物面z=x²+3y²所围成,求Ω的体积

Ω的体积=∫dx∫(x²+3y²)dy=∫(2x³-x^4-x^6)dx=1/2-1/5-1/7=11/70

证明锥面z=2√x^2+y^2被柱面x^+y^=2x所截得的有限部分的面积为√5π

可以用曲面积分来求.因为曲面是锥面z=2√x^2+y^2的一部分.满足z'x=2x/√x^2+y^2,z'y=2y/√x^2+y^2设∑表示x^2+y^2=2x所围成的圆域,S∑表示这个圆的面积.所求

曲面2z=x^2+y^2被柱面(x^2+y^2)^2=x^2-y^2所截下部分的曲面

柱面(x^2+y^2)^2=x^2-y^2化成极坐标方程是r^2=cos2θ.即r=√cos2θ.θ的范围是[-π/4,π/4]∪[3π/4,5π/4]S=∫∫dS=∫∫√[1+(z'x)^2+(z'

求双曲抛物面z=xy被柱面x^2+y^2=1(x>=0,y>=0)截下部分的面积.

D={(x,y):x^2+y^2=0,y>=0},z=xy,az/ax=y,az/ay=x,于是面积=二重积分_D根号(1+(az/ax)^2+(az/ay)^2)dxdy=二重积分_D根号(1+x^

求由抛物柱面z=2-x^2及椭圆抛物面z=x^2+ y^2围城的立体体积

体积=∫∫D(x²+y²)dxdy=∫∫D(p²)pdpdθ=∫(0,2π)dθ∫(0,√a)p³dp=1/4∫(0,2π)p^4|(0,√a)dθ=1/4∫(

求抛物面z=4-x^2-y^2被z=x^2+y^2所截下曲面的面积?

求偏导z'_x=-2xz'_y=-2y令z1=4-x^2-y^2=x^2+y^2=z2可得D:x^2+y^2≤2极坐标下可表示为0≤r≤√2,0≤θ≤2πS=∫∫(D)√(1+4x²+4y&

微积分 求柱面:x^2+y^2=a^2被平面x+z=0及x-z=0(x>0,y>0)所截部分的面积

y=√(a^2-x^2)面积S=∫∫√(1+(y'x)^2dxdy=∫(0,a)dx∫(-x,x)a/√(a^2-x^2)dz=2a∫(0,a)x/√(a^2-x^2)dx=2a*(-√(a^2-x^

用柱面坐标计算三重积分(Ω)∫∫∫xyzdy,其中Ω是柱面x^2+y^2=1与平面z=0与z=3所围成的面积

"使用柱坐标系:0≤θ≤π/2,0≤ρ≤1,0≤z≤1∫∫∫xydv=∫(0→π/2)dθ∫(0→1)ρdρ∫(0→1)ρ^2sinθcosθdz=∫(0→π/2)dθ∫(0→1)ρ^3sinθcos

z=x^2+y^2表示的二次曲面是椭球面,柱面,圆锥面,还是抛物面?

图像过原点当x^2+y^2增大即圆的半径增大时z也增大所以它的图像是倒立的圆锥面顶点在原点

求以双曲抛物面z=xy为顶,以xy坐标面为底,以平面x=0为侧,柱面x^2+y^2=1为内侧,柱面x^2+y^2=2x为

这道题应该是出错了,应该是以平面y=0为侧,那样结果就正确了.