双曲抛物面图形被柱面所截的面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 16:57:10
即底半径为4,高为4的正圆锥的侧面积=2π×4×√﹙4²+4²﹚/2=16√2π﹙面积单位﹚这是初中的几何题,与旋转抛物面无关.除非你是x=y².再问:但是确实在我高等数
这是一个旋转抛物面,垂直于z轴的截平面上的截口都是圆,面积没错,就是πz
z=1与z=x^2+y^2联立:x^2+y^2=1,z=1.这个曲线为以(0,0,1)圆,其中半径为1.所以面积S=πr^2=π
z=1-x-y代入z=x^2+y^2消去z即x^2+y^2=1-x-y所以投影为:{x^2+y^2+x+y-1=0{z=0再问:这个投影方程我知道的是说要算这个投影的面积再问:可能我问的不太好你看下原
不需要那样做由z=√(x^2+y^2)和z^2=2x可得曲面在xoy平面的投影为Dxy:(x-1)^2+y^2≤1dz/dx=x/√(x^2+y^2),dz/dy=y/√(x^2+y^2)√((dz/
应该先绘制曲面z=xy.matlab程序如下:x=-30:1:30;y=-30:1:30;n=length(x);[xb,yb]=meshgrid(x,y);zb=xb.*yb;%要用xb,yb而不是
Ω的体积=∫dx∫(x²+3y²)dy=∫(2x³-x^4-x^6)dx=1/2-1/5-1/7=11/70
可以用曲面积分来求.因为曲面是锥面z=2√x^2+y^2的一部分.满足z'x=2x/√x^2+y^2,z'y=2y/√x^2+y^2设∑表示x^2+y^2=2x所围成的圆域,S∑表示这个圆的面积.所求
柱面(x^2+y^2)^2=x^2-y^2化成极坐标方程是r^2=cos2θ.即r=√cos2θ.θ的范围是[-π/4,π/4]∪[3π/4,5π/4]S=∫∫dS=∫∫√[1+(z'x)^2+(z'
D={(x,y):x^2+y^2=0,y>=0},z=xy,az/ax=y,az/ay=x,于是面积=二重积分_D根号(1+(az/ax)^2+(az/ay)^2)dxdy=二重积分_D根号(1+x^
体积=∫∫D(x²+y²)dxdy=∫∫D(p²)pdpdθ=∫(0,2π)dθ∫(0,√a)p³dp=1/4∫(0,2π)p^4|(0,√a)dθ=1/4∫(
同济六版 10-4, 2TS = √2π见图.
求偏导z'_x=-2xz'_y=-2y令z1=4-x^2-y^2=x^2+y^2=z2可得D:x^2+y^2≤2极坐标下可表示为0≤r≤√2,0≤θ≤2πS=∫∫(D)√(1+4x²+4y&
z=10-x-5y∫∫√1^2+(-1)^2+(-5)^2dxdy=3√3∫∫dxdy=3√3*π3^2=27√3π
y=√(a^2-x^2)面积S=∫∫√(1+(y'x)^2dxdy=∫(0,a)dx∫(-x,x)a/√(a^2-x^2)dz=2a∫(0,a)x/√(a^2-x^2)dx=2a*(-√(a^2-x^
"使用柱坐标系:0≤θ≤π/2,0≤ρ≤1,0≤z≤1∫∫∫xydv=∫(0→π/2)dθ∫(0→1)ρdρ∫(0→1)ρ^2sinθcosθdz=∫(0→π/2)dθ∫(0→1)ρ^3sinθcos
图像过原点当x^2+y^2增大即圆的半径增大时z也增大所以它的图像是倒立的圆锥面顶点在原点
这道题应该是出错了,应该是以平面y=0为侧,那样结果就正确了.
pai/6*(三次根号四-1)