向量组a1,a2,..an,的秩为r,则下列说法不正确的是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:44:36
证明:N维向量组a1,a2.an线性无关的充分必要条件是任意n维向量都可以表示为a1,a2.an的线性组合.

先证必要性(前推后),因为任意n+1个n维向量必线性相关.所以任意向量b与a1...an相关.存在不完全为0的n+1个数k1...kn,kn+1.使得k1*a1+...kn*an+kn+1*b=0;若

证明向量组等价设b1=a2+a3+--------+anb2=a1+a3+--------+an------------

1+b2+……bn=(n-1)(a1+a2+……an)a1+a1+……an=(b1+b2+……bn)/(n-1)ak=(b1+b2+……bn)/(n-1)-bk(k为1至n中的某个数)于是向量组[a1

1.向量组A1,A2,A3...An是线性方程组AX=0的一个基础解系,向量组

证明:因为两个向量组所含向量个数相同所以只需证明b1,b2,...,bn线性无关.(b1,b2,...,bn)=(a1,a2,...,an)P其中P为n阶方阵,且P=t100...0t2t2t10..

如果向量组(a1,a2,a3.an)可以由向量组(b1,b2,b3...bn)线性表示 证明: 前者的秩小于后者的秩

向量组a1,a2,---ak可用向量组b1,b2---bL线性表示所以存在矩阵P,满足(a1,a2,---ak)=(b1,b2---bL)P.所以r(a1,a2,---ak)=r[(b1,b2---b

对n个向量a1,a2……an,如果存在不全为零的实数

a1=(1,1),a2=(3,-2),a3=(3,-7)是线性相关的,∴k1a1+k2a2+k3a3=0,∴k1+3k2+3k3=0,①k1-2k2-7k3=0,②①-②,5k2+10k3=0,k2=

向量租的秩 设向量租a1,a2,a3线性代数,而向量租a2,a3,a4线性无关,则向量组a1,a2

向量组α2,α3,α4线性无关,则α2,α3也线性无关.又α1,α2,α3线性相关,则α1可以由α2,α32线性表示.所以α1,α2,α3的最大线性无关组是α2,α3.

a1,a2,…an是一组n维向量,证明:它们线性无关的充分必要条件是任一n维向量组都可以由它们线性表示.

证明必要性设a为任一n维向量因为a1a2……an线性无关而a1a2

设A1,A2,……An∈R^n,证明:向量组A1,A2,……An线性无关当且仅当任一n维向量均可由A1,A2,…An线性

由A1,A2,……An线性无关而对任一n维向量B,A1,A2,……An,B线性相关所以B可由A1,A2,……An线性表示.反之,因为任一n维向量均可由A1,A2,…An线性表示所以n维基本向量组ε1,

线性的向量组问题 对于mxn矩阵A的n个m维列向量为什么是向量组a1,a2.an?到底怎

知识点:向量组a1,...,as线性无关的充要条件是向量组的秩等于s.R(A)=M,所以A的行向量组的秩为M.而A有M行,所以A的行向量组线性无关.R(A)=M,所以A的列向量组的秩为M.而A有N行,

若向量组a1,a2.,an线性无关,则对向量组b1=a1+a2,b2=a2+a3,...,bn=an+1,下列说法最准确

我觉得你题目写得有问题吧,bn=an+a1?记B=【b1b2...bn】,A=【a1a2...an】,D=【100.11100011.0.000.1】,则B=AD.注意D的行列式为1+(-1)^(n+

已知向量组a1,a2,a3的秩为3,求向量组a1,a3-a2的秩

向量组a1,a2,a3的秩为3,这说明这个向量组线性无关,向量组的线性相关性与向量组中向量之间的次序无关,也与某一个向量的非零倍数无关.所以向量组a1,a3,-a2的秩也为3.再问:答案是2啊~~向量

已知向量组a1.a2,a3的秩为3,求向量组a1,a3,—a2的秩

两个向量组查相互线性表示所以两个向量组等价而等价的向量组秩相同所以第2个向量组的秩也是3

设向量组a1,a2……an是n元线性方程组AX=0的基础解系,则 ( ) A 向量组a1,a2……an线性相关

题目有误."设向量组a1,a2……an是n元线性方程组AX=0的基础解系"应该是"设向量组a1,a2……as是n元线性方程组AX=0的基础解系"对吧.D正确.因为a1,a2……as是n元线性方程组AX

证明n维向量组a1,a2,…,an线性无关的充分必要条件是:任一n维向量a都可以由它们线性表示.

证明:充分性:若任一n维向量a都可以n维向量组a1,a2,…,an线性表示,那么,特别地,n维单位坐标向量组也都可以由它们线性表示,又向量组a1,a2,…,an也可由n维单位坐标向量线性表示,所以,向

线性代数问题定义1:向量组a1,a2.an线性无关,而向量组a1,a2.an,B线性相关,则B可以有a1,a2.an线性

这两个都是定义?你给的定义1是一个定理,一个结论,应该不是定义.这个结论的意义要与线性相关的向量组比较:一个向量组线性相关的充要条件是至少有一个向量可由其余向量线性表示但,具体是哪一个向量能由其余向量

matlab 表示一组向量S={a1,a1,a1...(T1个a1),a2,a2,...(T2个a2),.an,an,.

T=[2357];a=[1379];fun=@(a,T)a.*ones(1,T);S=cell2mat(arrayfun(fun,a,T),'un',false)再问:我刚刚跑了下你的程序>>T=[2

若向量组a1,a2,a3.an 线性相关,则a1 可由a2,a3.an线性表示?

对线性相关:k1a1+k2a2+...+knan=0所以:a1=-(k2/k1)a1-...-(kn/k1)an

因为A,B的秩相等,所以向量组a1,a2,...,an的极大线性无关组也是向量组a1,a2,...,an,b的极大线性无

向量组的极大线性无关组所含向量的个数称为这个向量组的秩!所谓矩阵的列(或行)秩就是指矩阵的列(或行)向量组的秩!注意:矩阵的列秩和行秩必然相等,统称为矩阵的秩!因为A,B的秩相等,即A,B的列秩相等所