四边形abcd内接于圆o,ab=cd,对角线bd为圆o的直径
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:43:17
∵四边形ABCD内接于圆O∴∠DCB+∠DAB=180°又∠PAD+∠DAB=180°∴∠PAD=∠DCB①∵DP//CA∴∠APD=∠BAC②又∠BAC=∠CDB③(等弧所对相等)由②③可得∠APD
由条件知四边形ABCD为等腰梯形∠AOB=∠COD令∠1=∠AOB;∠2=∠AOD;∠3=∠BOC;圆半径为R四弧的等式同乘R得到2∠1=∠2+∠3又2∠1+∠2+∠3=2π得∠2+∠3=π解法一:A
百度不让发...说有不合适的词语..发你消息里了
根据余弦定理:AC^2=AB^2+BC^2-2AB*BC*cosB=3^2+1^2-2*3*1*cosB=10-6cosBAC^2=DA^2+DC^2-2DA*DC*cosD=2^2+2^2-2*2*
∵AB是直径∴AD⊥BD∵AE⊥CE∴CE∥BD∴∠ECD=∠CDB∵CE是切线∴∠ECD=∠CBD(弦切角=圆周角,这是个定理)∴∠CDB=∠CBD∴DC=BC
已知四边形ABCD内接于圆O,AB为圆O的直径,过C点作圆O的切线CF,过A点作CF的垂线交CF于于F点,较BC的延长线于E点,角ABC+角DAB=135度,DC=√2厘米,求AE的长连接OD、OC、
对于正方形“内接于”圆,说明是在圆的内部,“外切于”圆,说明是在圆的外部;对于圆“内切于”正方形,说明在正方形内部;“外接于”正方形,说明在正方形外部.四边形内接于圆,等同于,圆外接于四边形,圆内切于
已知AC⊥BD,则∠CAD+∠ADB=90°,得∠COD+∠AOB=2∠CAD+2∠ADB=180°.作OF⊥AB垂足为F,连接OB、OC,则∠COE+∠BOF=1/2∠COD+1/2∠AOB=90°
证明:作直径AG,连接BG,则BG⊥AB∵OE⊥AB于E,∴E是AB的中点∴OE=BG/2又AC⊥BD,BG⊥AB,∠ADP=∠BGA∴CD=BG∴OE=BG/2=CD/2证毕!
证明:∠ABC+∠D=180°(圆内接四边形对角互补);∠ABC+∠EBC=180°(平角定义).∴∠EBC=∠D.(等式的性质)又AC平分∠BAD;AC=CE,则∠E=∠EAC=∠CAD.所以,⊿A
运用割线定理有:PA*PB=PD*PC这样CD的值很快就有了14/3具体割线定理的证明方法我就不说了,可以去问一下你们的老师
就是说一个四边形的四个定点到圆的圆心的距离相等切等于圆的半径圆心是O这个题有两个答案一个是圆心的四边形内答案是50度圆心在四边形外答案是230度所以答案为230或50度
设AE=x,则CE=x,AB=√2x,AC=2x因为BD=2√3,BF=4,所以∠F=60°,则∠BCD=60°因为AB:AE=√2,AC:AB=√2,所以AB:AE=AC:AB所以△ABE∽△ACB
∠GFC=∠FEC+∠FCE,∠DGF=∠DAE+∠GEA,(三角形外角等于两不相邻内角之和)∠FEC=∠GEA,(EF平分∠AED)∠FCE=∠DAE,(圆内接四边形外角等于内对角)∠GFC=∠DG
AE垂直CD,CD//AB=>AE垂直AB,又AB是圆O的直径且A点在圆上=>AE就圆O的切线
AC=3,PC=0.6,∴AP=2.4,设BP=x,PD=y,则AB=BP=x+y,由相交弦定理,xy=1.44,y=1.44/x,①由△PAB∽△PDC得AB/DC=PA/PD,∴DC=AB*PD/
如图,连结BO,并延长交AD于Q,连OD,则BQ为AD垂直平分线,且△OAB≌ △ODB(三边相等), ∴∠ODP=∠OAB=∠CDP∴ 在△CDO中&nbs
证明:连接BO并延长BO交圆O于E,连接AE、DE∵直径BE∴∠BAE=∠BDE=90∵AC⊥BD∴AC∥DE∴弧AD=弧CE∵弧AE=弧AD+弧DE,弧CD=弧CE+弧DE∴弧AE=弧CD∴AE=C
解题思路:构造直角三角形,运用三角形函数进行求解 解题过程:解:∵四边形ABCD是圆内接四边形,∴∠B+∠ADC=180°,∠BAD+∠BCD=180°∵∠A