回归分析中常数项不显著

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:21:46
求救,spss回归分析中常数项是负值是什么意思呢?

常数项为负p值0.04,拒绝常数项为0的假设,统计显著,没问题.再问:那意思是说我这个回归方程没有常数项吗?再答:呵呵相反常数项的P值很小,表明常数项不是显著为0的,它应该包含在模型中。再问:那就是Y

请问多元线性回归模型方差分析不显著,但有单独因子效应分析显著,是否要整个模型显著才行?

你这里面从各个变量的t检验看显然有变量不显著,把这些变量剔除掉重新建立新的回归模型就是了,哪儿有在这种伪回归的情况下纠结方差分析是不是显著的……再问:那有无回归模型显著,但有个别变量不显著的情况,请教

如何用回归分析验证几个自变量对一个因变量的影响最显著的为哪个自变量?主要比较回归分析的哪个值啊!

啥意思啊据我对问题的了解做以下回答比较标准化回归系数,值最大的表示影响最大,前提是具有显著性.

用spss进行回归分析时得出显著性水平大于0.05怎么办

以你所选取的自变量拟出的公式与实际的统计值出入比较大,建议去除相关性较小的几个自变量就有可能小于0.05.

回归分析中是先做自变量的显著性检验还是先做自相关性检验

先进性复共线性检验,如果变量之间复共线性特别大,那么进行岭回归和主成分回归,可以减少复共线性,岭回归是对变量采取了二范数约束,所以最后会压缩变量的系数,从而达到减小复共线性的目的,另外这个方法适合于p

用SPSS进行回归分析,其中的β显著不显著是什么意思?

β对应的P值大于所给的显著性水平一般取α=0.05意为β对应的变量对因变量的影响明显

MInitab 回归分析 怎么看出各因素影响显著程度

简单来讲就是通过看各因素分析结果中的P值:在P值小于0.05时,P值越小影响越显著,当然也包括常数值.

相关系数0.2-0.5,但spss显示显著,可以进行线性回归分析吗?如果进行非线性回归该怎么选择模型?

要根据散点图来初步估计下大概是什么关系如果比较简单的不建议采用非线性回归,因为要自己构建算式的,比较有难度可以采用曲线回归,它会有一系列常用的曲线模型,你可以根据散点图大致选择几个模型然后结果会输出各

spss进行线性回归分析时,相关系数都符合,但是显著性不符合,如何调整

你是想调整数据呢还是想调整什么呢?线性回归时候,相关系数只是表明了各个系数之间的相关程度.但是自变量对因变量不显著的话,只能说明自变量多因变量影响不大,可以考虑换其他的跟因变量关系更加大的变量.或者在

EXCEL作回归分析中显著性判断!

看来LZ应该是刚开始作统计分析啊,其实里面的数据还是比较简单的,第一行MultipleR表示R^2的值,第二行则表示R值,第三行表示调整R方,一般R^2是衡量回归方程是否显著的决定因子,但只是一方面.

求救,spss回归分析中常数项是负值是什么意思呢?常数项能不能是负数呢?

常数项的正负都没有关系,它是否显著也没什么意义关键是你要看自变量的回归系数正负是否符合你的专业常识这个回归方程是:y=0.350*x1+0.332*x2+0.470*x3+0.211*x4-0.911

相关分析和回归分析要求数据符合正态分布吗?差异性显著性分析时,要求比较的两组数据都符合正态吗?

不一定要求都正态分布的,因为分析方法有很多,针对数据情况合适选用,如t检验,χ2检验等等检验方法;数据转换后分析不影响结果的一般情况下,虽然数据是变了,但数据间关系及差异情况是不会变的,要不然就不会有

SPSS相关性不显著还要继续回归分析吗

刚看了一篇外文文献,其中提到了几个变量之间的相关性分析.作者用SPSS得出A与B的相关性系数约为0.09,但显著性水平大于0.05即不显著.随后继续作回归性分析(未阐明是否是多元线性)结论是BETA值

回归分析 Logistic 回归分析

你先找到自变量和因变量,就可以直接利用SPSS中的曲线回归中logistic的模型拟合就可以了

SPSS回归分析,谁能不帮我看看这个结果是不是显著地

按图片的结果来看,R2真是比较低,但后面的方差和B值基本都极其显著.可以这么说,理论上模型是有效的,但主要是通过常数项来影响因变量.就是常数项的值和因变量的值比较接近,自变量分数乘以系数,相对常数来说

spss 回归分析二次曲线回归,R比较高,但是二次项系数显著程度能达到0.5 是不是不显著的意思?线性回归,回归系数是显

不能拒绝二次adm项系数为0的假设所以不显著你可以看看二次回归和一次回归R方的差异如果不大说明一次v即可.再问:但是R^2很大啊。。。再答:一次和二次的R方差异是多少?再问:相差不大。。。

回归分析中如何让虚拟变量和因变量有显著相关性?

虚拟变量,你可以试试0-1这样的虚拟变量,含0的,对应的y低,含1的对应的y高(假设正相关).其实主要看你的虚拟变量打算加在哪里,加在常数项就这么做,加在系数项的话就是另外一组数据了.你可以先写个含虚

急求SPSS回归分析的回归系数为负时如何比较谁的影响更显著

回归系数比较大小是通过绝对值的比较,同时应该看后面的标准化回归系数进行比较影响的大小

只有相关显著的自变量才可以和因变量进行回归分析吗?

个人建议你是先做所有变量的多元回归,因为你在做自变量与因变量间的相关系数时,是排除了其他变量的影响,而在做多元回归时,变量间有可能存在影响的.然后再看回归的结果,比如R平方,F值,方程的显著性,系数的