固定于竖直面内的粗糙斜杆长为1米,质量为1KG

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/04 23:18:06
如图a所示,质量m的小球穿在足够长的斜杆上,斜杆与水平方向成θ角,斜杆固定不动,小球与斜杆间的动摩擦因数为μ,小球受方向

楼上给的已经算出了速度最大时候的F,你在根据坐标写出速度和力的关系式F=F0/v0*V,就能得出V了.再问:�ܷ�����ϸһ��Ĺ�̣�лл再答:

半径为R的光滑圆周轨道固定于竖直面内,一质量为m的小球在轨道内做圆周运动,经最高点C时,对轨道的压力大

(1)从C到最低点A的过程中,重力作功的结果是重力势能减小,动能增加,而运行时间为T/2,所以平均功率=2Rmg/(T/2)=4mgR/T(2)小球经过最高点C时,运动方向为水平方向,与重力方向垂直.

如图所示,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆下端固定有质量为m的小球,下列关于杆对球的作用力F的判断中,

A、B,小车静止时,球受到重力和杆的弹力,由平衡条件得F=mg,方向:竖直向上.故AB错误.   C、小车向右以加速度a运动时,如图1所示,只有当a=gtanθ时,F=m

1.如图所示,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆下端固定有质量为m的小球,下列关于杆对球的作用力F的判断

1、D对.固定杆对小球的作用力原则上可沿任意方向,题目所给的角度是没用的.对小球分析:受到重力mg、杆对它的作用力F.当小车静止时,以上二力平衡,F=mg,F方向是竖直向上.当小车有水平加速度时,以上

固定在小车上的支架的斜杆与竖直杆的 夹角为θ,在斜杆下端固定有质量为m的小球,当小车向左以加速度a运动时,为什么一定有f

1、D对.固定杆对小球的作用力原则上可沿任意方向,题目所给的角度是没用的.对小球分析:受到重力mg、杆对它的作用力F.当小车静止时,以上二力平衡,F=mg,F方向是竖直向上.当小车有水平加速度时,以上

如图所示,轨道ABCD固定在竖直平面内,其中AB为倾斜的光滑直轨道,BC是长L=0.8m粗糙水平直轨道,CD是半径为R=

(1)由Gh=mv^2/2带入数据得v=2m/sG=10N/KG(2)μmgs=mv^2/2带入数据得μ=0.25(3)滑块下落高度再加上CD的垂直高度,h+2R=0.4m再问:请问第三问能讲明白下吗

一长为L=0.5m的轻线一端固定于O点,另一端固定质量为m的小球,在垂直平面内做语速圆周运动,如图所示,当线与竖直线的夹

小球应该摆到o点上方才会离开轨道,此时,绳子恰好松掉,重力的分力提供向心力F=mgsinα=mv2/L,算出v=2m/s

(2013•淮安模拟)如图所示,小车上固定一水平横杆,横杆左端的固定斜杆与竖直方向成α角,斜杆下端连接一质量为m的小球;

A、B、对右边的小铁球研究,根据牛顿第二定律,设其质量为m,得:mgtanβ=ma,得到:a=gtanβ对左边的小铁球研究.设其加速度为a′,轻杆对小球的弹力方向与竖直方向夹角为θ,由牛顿第二定律,得

5,如图所示,在竖直平面内,AB为水平放置的绝缘粗糙轨道,CD为竖直放置的足够长的绝缘粗糙轨道,

电场力F电=qE=8N,方向水平向右(因为带电体从A点由静止开始向右运动)带电体与AB间滑动摩擦力f1=μmg=1N带电体与CD间滑动摩擦力f2=μF电=4N1、从A到C,由动能定理可得:F电·(SA

质量都为m的两个小球,分别系在长为L的细杆和细绳上,杆和绳的另一端固定,都可绕其固定端在竖直面内自由转动,若要使两小球都

B正确杆连接的小球竖直面上做圆周运动,速度可以是任意的,所以刚好通过最高点的速度为0,设到达最低点速度为v1,根据机械能守恒有(1/2)mv1^2=mg2L绳连接的小球竖直面上做圆周运动,刚好通过最高

如图所示,固定于竖直面内的粗糙斜杆,在水平方向夹角为30°,质量为m的小球套在杆上,在大小不变的拉力作用下,小球沿杆由低

60度F=MG此时没有摩擦力,拉力做工为MGH,有机械定理可知,此时机械效率100%,做功是最少的.再问:你的想法跟我一样,但是书后参考答案是60°,√3mg。麻烦你再思考一下,看看是答案错了,还是我

A固定于竖直面内的粗糙斜杆,与水平方向成30度角,质量为m的小球套在杆上,在大小不变的拉力作用下,小球

60mg夹角60°时,沿斜面分解力F,垂直方向的分力与重力的分力抵消了.因为没有摩擦力,拉力做功最小.

如图,固定于竖直面内的粗糙斜杆,与水平方向夹角为30°,质量为m的小球套在杆上,在大小不变的拉力作用下,小球沿杆由底端匀

图呢再问:2010上海理综再答:第几题再问:25再答:http://wenku.baidu.com/view/4941952ded630b1c59eeb5ae.html好像不是这道题目啊再问:物理部分

如图所示,长为l的细杆,质量为m0,两端各固定质量分别为m和2m的小球,杆可绕水平光滑固定轴O在竖直面内转动,转轴O距两

你有些数据打得不清楚,比如说m小球碰前速度和碰后速度,O的位置等.如果你只是不会求转动惯量的话,那我就直接告诉你怎么求.首先,细杆绕质心的转动惯量是1/12*mL^2,这个数据应该是要背的,否则每一次

如图所示,光滑水平面 与竖直面内粗糙的

恰好到达C点就是说速度为V=根号gR你说的到达C点为0吧?这个想法是错误的恰好到达最高点的问题这个跟绳子拉球的问题相同(V=根号gR)和杆子圆管问题不同(V=0)就点到这了中间都是计算过程这里不好打出

如图,MNP为竖直面内以固定轨道,某光滑圆弧段MN与水平段NP相切于N ,P端固定一竖直板。M端相对于N的高度差为h,N

解题思路:从物块开始下滑到物块停止的整个过程中,应用动能定理可以求出动摩擦因数.注意这里存在两种可能情况。解题过程:解:这里存在两种可能:第一种情况:物块与P处的竖直挡板相撞后,向左运动一段距离,停在

如图所示,ABCDE为固定在竖直平面内的轨道,ABC为直轨道,AB光滑,BC粗糙,CDE为光滑圆弧轨道,轨道半径为R,直

(1)小物体下滑到C点速度为零.小物体才能第一次滑入圆弧轨道即刚好做简谐运动.从C到D由机械能守恒定律有:mgR(1-cosθ)=12mvD2    ①在D点用

如图所示,固定在小车支架上的斜杆与竖直杆的夹角为O,在斜杆下端固定一个质量为M的小球

首先,小球向又运动,加速度为a,说明杆对小球有两个方向的力,一个与重力相对的竖直向上的力,还有一个是向右的拉力.从同可知,竖直向上的拉力与杆的合力成角度为90-θ,所以F=mg\sin(90-θ).你

如图,固定于竖直面内的粗糙斜杆,与水平方向夹角为30°,质量为m的小球套在杆上,在大小不变的拉力作用下,小球沿杆由底端匀

∵小球匀速运动,由动能定理得;WF-Wf-WG=0    要使拉力做功最小则Wf=0,即摩擦力为0,则支持力为0.    

如图所示为位于水平面上的小车,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆的下端固定有质量为m的小球.下列关于杆对

A、B、小球受竖直向下的重力mg与杆对小球的力F作用;当小车静止时,小球也静止,小球处于平衡状态,受平衡力作用,杆的作用力F与重力是一对平衡力,由平衡条件得:F=mg,方向竖直向上.故A、B错误.C、