圆o与三角形ABC各边分别切于dEF
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:58:59
题目内容较多,请稍等再答:1、证明:∵等边△ABD、等边△ACE∴AB=AD,AC=AE,∠ABD=∠ADB=∠1=∠2=60∵∠BAE=∠BAC+∠2,∠DAC=∠BAC+∠1∴∠BAE=∠DAC∴
如图,在Rt三角形ABC中,角BAC=90度,以AB为直径作圆O交BC于E,D为AC的知G也在圆上,而K是圆和AH交点,故知K和G重合.接下来证明角EAB=30度.
证明:∵E,F分别为AB,AC的中点∴EF‖BC∴△AEO∽△ABD∴AO:AD=AE:AB=1:2即O为AD的中点过点D作DM‖CP,交AB于点P在△BCP中∵BD=CD∴BM=MP在△AMD中∵A
EC=BD理由如下:∵△ABE和△ACD都是等边三角形∴AE=AB,AD=AC∠EAB=∠DAC=60°.∵AE=ABAC=AD∠EAC=∠EAB+∠BAC=60+∠BAC=∠DAC+∠BAC=∠BA
资料中例5就是这道题,我只画出来图,答不了,找到答案没有看懂,惭愧.
延长AC.过点G作AB的平行线,交AC延长线于点H.因为GH//AB 所以△CGH相似于等腰直角△ACB,△DGH相似于△ADF因为AC=BC=6 ∠ACB=90度 D为
(1).相等链接OD两点.由题可知,三角形ACB为等腰直角三角形,O为斜边AB中点,AC为圆的切线,则OD垂直AC,即OD平行于BC,推出角DOA=角CBA.因为角OFD=角ODF,所以角DOA=2倍
再答:只会第一题再问:谢啦
证明:连接DF,EF因为圆O内切于三角形ABC,切点分别为D、E、F所以根据弦切定理有:∠EDF=∠CFE,∠DEF=∠BFD,BF=BD,CF=CE因为FG垂直于DE于点G所以DG=DF*cos∠E
利用圆周角的概念及相似三角形来证,证法如下.在⊙O中,∵⊙A的半径AC=AD,∴弧AC=弧AD,圆周角∠ACD=∠ADC=∠ABC.在△ACG和△ABC中,∠CAG=∠BAC以及∠ACG=∠ABC,于
方法一:三角形OMN的面积是1.5,设三角形MNC的面积为x,可列方程:x/(1.5+1)=(x+3+1.5)/(2+1)=ON/NB解得:x=22.5
因为BC为圆o的直径,所以
作OF,OE,OA因为相切,OF垂直AB,OE垂直AC考察三角形OFA与OEAOA=OAOF=OE根据直角三角形全等判定原理三角形OFA与OEA全等由此AF=AE又AB=AC所有BF=EC
(2)连接DE,则角ADE=90度,角OED=角ODE=90度-角BAC,BD=BC,角BDC=角BCA=90度-角BAC,所以角OED=角ODE=角BDC=角BCA,故角EOD=角DBC,△EOD∽
(1)要使圆O与AC边也相切,应增加条件AB=AC(2)因为AB=AC,即:△ABC为等腰△,又AO是三角形ABC的中线,故AO也是顶角∠BAC的平分线(等腰△三线合一).即圆心O在顶角∠BAC的平分
OD=3即圆的半径,则,OF=3BF=3根号2-3接着求出BF/FAAD/DC=1接着利用截线DFG与三角形ABC的梅涅劳斯定理,求出CB/BG接着就易求CG了不知道这是什么程度的题目,用了梅涅劳斯定
四边形OECF的形状是正方形内切圆半径rAF=AD=6BE=BD=4AC^2+BC^2=AB^2即(6+r)^2+(4+r)^2=100解得r=2(另一解略)AC=AF+CF=8
(1)根据根与系数的关系,可以得到EH+HF=k+2②,EH•HF=4k>0③,再结合已知EH-HF=2,可求k的值,再把k的值代入方程,解方程可求EH、HF,从而可求EH;(2)连接BD
证明:∵ΔABE与ΔACD是等边三角形,∴AE=AB,AC=AD,∠AB=∠CAD=60°,∴∠EAB+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,∴ΔAEC≌ΔABD.再问:第二部那是角什么
O为AB中点.OA=OB=OD=OE=R,所以∠OAD=∠ADO,∠OBE=∠BEO,又∠C=60°,所以∠OAD+∠OBE=120°,所以∠ADO+∠BEO=120°,∠BED+∠ADE=240°,