圆O中AB=AB,BC交圆O于点D,AC交圆O于点E,角BAC=45度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 20:53:16
在△ABC中,AB=AC,O是AB上一点,以O为圆心的圆经过点A,交AB于点F,与BC相切于点E.点D为BC的中点,连结

1、以O为圆心的圆经过点A,交AB于点F,与BC相切于点E.即BC是圆o的切线,所以OE⊥BC又,AB=AC,点D是BC的中点,所以AD⊥BC所以AD//OE2、∠B=30°,则∠BOE=60°又,O

在三角形ABC中,以BC为直径的圆O交AB于D,交AC于E,BD=CE,求证:AB=AC

连接od,oe三角形obd,oce三边相等,是全等三角形由此可知角abc等于角acb三角形abc是等腰三角形,ab=ac

在等腰三角形ABC中,AC=BC=6,AB=8,以BC为直径作圆O交AB于D,交AC于G

设CG长为X,BG长为Y,则:X^2+Y^2=36(6-X)^2+Y^2=64解得:X=2/3所以:Sin∠E=Sin∠CBG=X/BC=1/9分析题得出的条件有:(1)D为AB中点,CD⊥AB(2)

已知:如图,圆o中,AB是直径,BC=CF,弦CD垂直AB于点D交BF于F,求证:BE=EC

证明:∵AB是直径∴∠ACB=90°∴∠BAC+∠ABC=90°∵CD⊥AB∴∠BCD+∠ABC=90°∴∠BAC=∠BCD∵BC=CF∴∠BAC=∠CBF(等弦对等角)∴∠BCD=∠CBF∴BE=E

如图,AC切圆O于点A,AB为圆O的弦,AB=AC,BC交圆O于E,圆O的弦AD‖BC,AO的延长线交BE于F.求证:

第二问,先证等腰三角形,再用三线合一可得再问:哪个等腰三角形?再答:三角形AFC再问:如果△AFC为等腰三角形的话,那么AC=AF,因为AC=AB,所以AF与AB重合。这不对吧?再答:第二问,先由弦切

如图所示已知△ABC中以AB为直径作圆O交BC于D,过点D作圆O的切线FE,交BC于E,且AE⊥DE.求证AB=AC

如图,连结OD,∵DE是圆O的切线,∴OD⊥DE,又∵AE⊥DE,∴OD∥AC,∴∠C=∠BDO,∵OB=OD,∴∠B=∠BDO,∴∠B=∠C,∴AB=AC 

在三角形ABC中AB=BC,以AB为直径的圆O交AC于D,过点D向DF垂直于BC交AB延长线于点E,垂足为F,DE是切线

过O做OG⊥AD于G在△ABC中∵OD=AB/2=BC/2∠DOE=∠DFB=90°,即OD‖BC∴OD为△ABC中位线即AD=AC/2=4在等腰三角形AOD中OG为AD的垂直平分线即AG=AD/2=

在圆O的内接三角形ABC中,AB=AC,D是圆O上一点,AD的延长线交BC的延长线于点P.

1、因为AB=AC,所以角ABC=角ACB角ABD=角ABC-角DBC角P=角ACB-角CAD又角DBC=角CAD所以角ABD=角P又角BAD=角PAB所以三角形ABD相似于三角形APB所以AB/AP

如图三角形ABC中,CA=CB,以BC为直径的圆O交AB与D,圆O的切线DE交AC于E

(1)求证:DE⊥ACBC为直径,∠CDB=90°;∠CDA=∠CDB=90°;CA=CB,∠A=∠B,所以∠ACD=∠BCD,∠B=∠CDE,[弧DC所对圆周角=弧DC所对圆切角]∠CDE+∠ACD

已知如图,在梯形ABCD中,AB‖DC,AD=BC,以AD为直径的圆O交AB于点E,圆O的切线EF交BC

(1)、连接OE.由AB∥DC,AD=BC可得∠A=∠B由于AD为直径,所以DE⊥ABOD=OE所以∠ODE=∠OED∵∠FEB+∠DEF=90°∠OED+∠DEF=90°∴∠FEB=∠OED=∠OD

在三角形ABC中,AC=BC=6,角C=90°,O是AB的中点,圆O与AC相切于点D,与BC相切于点E,设圆O交OB于点

将几何图形坐标化以C为原点ACBC为xy轴建立坐标系易得圆O半径是3所以D(3,0)E(0,3)A(6,0)B(0,6)圆方程(x-3)^2+(y-3)^2=9AB方程为y=-x+6解得F点坐标为(3

AB为圆O的直径,AC交圆O于E点,BC交圆O于D点,CD=BD,角C=70度

连结AD,则可以证明AD垂直平分线段BC.1、三角形ACD为直角三角形,且角C=70°,则角CAD=20°,所以角A=20°×2=40°;2、AC=AB,正确;3、弧AB与弧BE明显不等;4、A、B、

如图,在三角形abc中,以ab为直径的圆o交bc于点p,pd垂直于ac交于d且pd于圆o相切(1)ab=ac(2)bc=

(1)是证明吧连接PODP与圆相切,则OP⊥DP且DP⊥AC则AC平行于OP则∠OPD=∠C(同位角)且圆内OP=OD∴∠OPD=∠ODP则∠ODP=∠C△CAD中,AD=AC(2)过A做AF⊥CD于

如图,三角形ABC中,AB=AC,以AC为直径的圆O交BC于点D,交AB于点E,连接CE,过点D作圆O的切线交AB于点M

(1)连接AD,则角ADC=90度,因为AB=AC,所以D为BC中点,连接OD,因为O为AC中点,所以OD//AB,因为DM为切线,所以角ODM=角BMD=90度,又角AEC=90度,所以DM//CE

如图,在△ABC中,AB=AC,以AB为直径作圆O交BC于D,交AC于E,过D作DG垂直AC于G,交AB的延长线于点F.

解:连接BE,AD.AB为直径,则∠BEA=∠ADB=90°,BE垂直AC.又AB=AC,则BD=CD.∵DG垂直AC.∴DG∥BE,⊿CGD∽⊿CEB,CG/CE=CD/CB=1/2,则CG=(1/

已知,如图,△ABC中,AB=AC以AB为直径作圆O交边BC于D.交边AC于E

连接OE,OD,AD, ∵AB为圆O的直径,∴∠ADB=90°,又AB=AC,∴AD为∠BAC的平分线,即∠BAD=∠CAD又圆心角∠BOD与圆周角∠BAD都对BD弧又圆心角∠EOD与圆周角

如图:AB为圆O的直径,AB=AC,BC交圆O于点D,AC交圆O于点E,角BAC=45度.求证:BC²=2AB

因为AB是圆O的直径所以角ADB=90度所以AD是三角形ABC的垂线因为AB=AC所以三角形ABC是等腰三角形所以AD是等腰三角形ABC的中垂线所以CD=BD=1/2BC由圆幂定理得:CE*AC=CD

如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于点D,过点D作DF垂直于BC,交AB的延长线于E,垂足为F.

(1)证明:如图,∵AB是⊙O的直径,∴∠ADB=∠90°,∴BD⊥AC;∵AB=BC,∴AD=DC;∵OA=OB,∴OD∥BC,∵DE⊥BC,∴DE⊥OD.∴直线DE是⊙O的切线.作DH⊥AB,垂足