在n维线性空间中,下列n维向量的集合V,是否构成P上的线性空间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:41:48
反证,若存在b不能由a1-n先行表示,则b同a1-n这n+1个向量线性无关,线性空间中极大线性无关组中包含的向量个数N>=n+1>n,与题设中“n维向量空间”矛盾,后者与“极大线性无关组包含向量个数为
题目是不是这样V={(a,b,a,b,...,a,b)|a,b属于P};V是由所有(a,b,a,b,...,a,b)这样的向量构成的.再问:是的。再答:首先你要理解V的含义,即V中元素是这样的向量α=
这个证明不对,除非你能够证明出(1)是b的唯一表示法,否则这样是不行的.充分性:取n个线性无关的n维向量b1,b2,..,bn,由必要性知任一n维向量均可由b1,b2,...,bn线性表示,也就是说a
可以.一个向量b能否由一个向量组a1,...,as线性表示等价于线性方程组x1a1+...+xsas=b是否有解即(a1,...,as)x=b是否有解.n维向量空间里n个线性无关的向量a1,...,a
在n维向量空间中,任意n+1个向量线性相关,所以α1.α2...αn,β线性相关,设:c1*α1+c2*α2...+cn*αn+c*β=0(其中c1,…cn,c不全为0)若c=0,则可得α1.α2..
只要证明两两正交的非零向量线性无关即可,用线性无关的定义去证明.再问:我要解答过程再答:我只给提示
设V是数域K上的n维线性空间,可知V同构于向量空间K^n,故只需讨论V=K^n的情形.考虑V的子集S={(1,a,a^2,a^3,...,a^(n-1))|a∈K}.K作为数域,总是无限集,故S也是无
既然都是n维空间了,一组基当然就是n个无关的向量.
太累了,/>再问:谢谢~太有才啦~怎么想到这么做呢?就是看到这个题首先想到什么?为什么就从这个角度去做呢?
在空间中任取一个向量b加入这n个线性无关的向量ai(i=1,2,...,n)那么这n+1个向量一定是线性相关的故存在一组不全为0的ki(i=1,2,...,n)和c使得k1*a1+k2*a2+...+
能构成,V是他的子空间,验证加法和数乘运算的封闭性就可以了
从线性空间的基的定义可以知道,从线性空间的维数n的定义可以直接导出.再问:请问证明过程怎么写啊再答: 不好意思,没看全。 法一:直接法 如果线性空间中的每一个向量都可以唯一写成为该空间中n个给定
把n+1个n维列向量排成一个n×(n+1)型矩阵.这个矩阵的秩一定是不大于n的.所以这n+1向量组的秩不大于n,所以线性相关.
比如对线性无关的行向量a1,a2,.,an加一维度得到b1=(a1,l1),b2=(a2,l2),.bn(an,ln)若k1b1+...knbn=0即k1(a1,l1).+kn(an,ln)=0这要求
任何一个向量与基合在一起组成的n+1个向量的向量组,必定是线性相关的!其实n维空间里,任何n+1个向量构成的向量组,都必定线性相关.换句话说,n维空间里至多能找出n个线性无关的向量来!
先将r个向量正交化设(x1,...,xn)与已知的r个向量正交可建立r个方程的齐次线性方程组其基础解系含n-r个向量,正交化之全部单位化即得标准正交基
是啊假设他们非线性,那岂不N+1维了
这里有个概念问题"n维向量空间"是指空间的维数dimV=n其基一定含n个线性无关的向量由n维向量构成的向量空间,其维数就不一定是n了比如V={(0,x2,...,xn)}它是由n维向量构成的n-1维向