在rt△,∠acb=90°,af=4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:41:47
∵CD⊥AB∴∠BCD=90°即∠B+∠BCD=90°∵∠ACB=90°∴∠A+∠B=90°∴∠A=∠BCD
AB'=AB=4B'C=AB'-AC=AB-ACAC=1/2AB=2B'C=4-2=2
设a=2k,则c=3k∵RT△ABC中,∠ACB=90°∴b=√[﹙3k)²-(2k)²]=√5×k∴sinA=a/c=2/3cosA=b/c=√5/3sinB=b/c=√5/3c
∵△A'CB'是由△ABC旋转得到的∴B'C=BC∴∠ABC=∠B'=∠CBB'=55°∴∠DBB'=110°∵∠B'=55°∠A'CB'=90°在四边形BDCB'中∠BDC=360°-∠A'CB'-
=12cd=60/13再问:我要过程。。再答:b=根号(c²-a²)=根号(13²-5²)=12sinA=a/c=CD/b所以5/13=CD/12CD=5/13
因为∠A=35°,所以∠B=90-35=55度.因为BC=B'C,所以∠CB'B=∠CBB'=55度,∠B'CB=180-55-55=70度.那么∠DCB=90-70=20度,∠ABC=55度.所以∠
解题思路:在Rt△ABC中,易求得∠ABC的度数,根据旋转的性质知:∠ABC、∠B′相等,∠A、∠A′相等,BC=B′C,由此可得∠CBB′的度数,进而由三角形的外角性质求得∠BCA′的度数,即可得到
解题思路:根据直角三角形两锐角互余求出∠ABC=55°,再根据旋转的旋转可得∠F=∠ABC,CF=CB,∠BCF=∠ECA,再根据等腰三角形两底角相等求出∠BCF,即可得解.解题过程:
证明:∵∠ACB=90∴∠ACD=180-∠ACB=90∴∠ACB=∠ACD∵AC=BC,CD=CE∴△ACD≌△BCE(SAS)∴∠D=∠BEC又∵∠ACD=90∴∠DAC+∠D=90∵∠AEF=∠
第1题:(1)证明:因为DE垂直平分AC,所以AD=CD,且∠ADE=∠CDE=90°,而DE是△ADE和△CDE的公共边,所以△ADE≌△CDE所以∠BCE=30°,∠CED=∠AED=60°所以∠
(1)DE为中位线→DE‖BF→∠AED=90°→DE为三角形ACD的高线——aE为中点→DE为三角形ACD的中线——b综合a,b→三角形ACD为等腰三角形,AD=CD→∠A=∠ACD∠CEF=∠A→
∵M是AB的中点,∠ACB=90°∴CM=AM∴∠A=∠ACM∵折叠∴∠ACM=∠DCM∵CD⊥AB∴∠A+∠ACM+∠DCM=90°∴3∠A=90°∴∠A=30°
在Rt△ABC中,∠ACB=90°,∠A=38°,所以∠B=52∠B°因为BD平分∠ABC,所以∠CBD=1/2∠B=26°因为CE垂直BD,所以∠BCE=64°又因为∠ACB=90°,所以∠DCE=
∵在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°-25°=65°,∵△CDB′由△CDB反折而成,∴∠CB′D=∠B=65°,∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D
∵∠ACB=90°,AC=BC=1,∴AB=2,∴S扇形ABD=30•π(2)2360=π6.又∴Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△
x=3∠A证明:做CD⊥AB于D,则∠BCD=∠B'CD=∠A;所以,∠BCB'=2∠A;又∠BCB'+∠B'CA=90°,∠ACA'+∠B'CA=90°;所以,∠ACA'=2=∠A;所以,x=∠OC
取线段AB的中点,记为M点,故MA=MB=1/2AB(利用直角三角形斜边上的中线等于斜边的一半)得:CM=1/2AB,DM=1/2AB,所以MC=MD=MA=MB所以A.B.C.D四点共圆,圆心是点M
由三角形BED相似于三角形BCA可得BE:BC=DE:AC即(3-CE):3=DE:4解得DE=12/7再问:第二小题呢再答:还是设正方形的边长是x,利用三角形相似得到MN:AB=CM:CA即x:5=
AB与CD的关系是:AB²=(16/3)CD²CD²证明:如图.由题意有:CD²=AD*BD,AD=(√3)CD, B
因为角ACB=90度所以sinB=BC/ABS三角形ABC的面积=1/2AC*BC=1/2*BC*AB*sinB因为AC*BC=1/4AB^2所以1/4AB^2=BC*sinBsin*B*(BC/AB