在Rt△ABC中,∠A=90°,D为斜边BC中点,DE⊥DF
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:41:07
∵AC=5/13AB设AC=5k,则AB=13k根据勾股定理BC=12k所以sinA=5/13cosA=12/13tanA=5/12cotA=12/5
(1)∵Rt△ABC中,a=6,b=10,∴c=b2−a2=102−62=8;(2))∵Rt△ABC中,a=24,c=25,∴b=c2+a2=252+242=1201.
∠b=70度,BC=4sin20度=1.368,AC=4cos20度=3.758
令斜边上的高为h,则a*b=c*h……①21/a+21/b=1……②√440/c+√440/h=1……③a²+b²=c²……④②式是由KE/BC=AE/ABED/AC=E
sinA=BC/ABcosA=AC/ABSIN^2A+COS^2A=(BC^2+AC^2)/AB^2根据勾股定理,BC^2+AC^2=AB^2所以SIN^2A+COS^2A=1
AB'=AB=4B'C=AB'-AC=AB-ACAC=1/2AB=2B'C=4-2=2
因为角C=90度所以由勾股定理得:c^2=a^2+b^2因为a=根号3b=3所以c=2倍根号3sinA=a/c=1/2所以角A=30度角B=60度
=12cd=60/13再问:我要过程。。再答:b=根号(c²-a²)=根号(13²-5²)=12sinA=a/c=CD/b所以5/13=CD/12CD=5/13
因为∠A=35°,所以∠B=90-35=55度.因为BC=B'C,所以∠CB'B=∠CBB'=55度,∠B'CB=180-55-55=70度.那么∠DCB=90-70=20度,∠ABC=55度.所以∠
解题思路:在Rt△ABC中,易求得∠ABC的度数,根据旋转的性质知:∠ABC、∠B′相等,∠A、∠A′相等,BC=B′C,由此可得∠CBB′的度数,进而由三角形的外角性质求得∠BCA′的度数,即可得到
答案选D~因为是角平分线焦点,设交点为点O~点O到三边的距离相等~把这距离设为h把点O与定点A,B,C相连~形成三个小三角形~三个小三角形面积和等于三角形ABC的和~即1/2a*h+1/2b*h+1/
勾股定理,a*a+b*b=c*c
(1)DE为中位线→DE‖BF→∠AED=90°→DE为三角形ACD的高线——aE为中点→DE为三角形ACD的中线——b综合a,b→三角形ACD为等腰三角形,AD=CD→∠A=∠ACD∠CEF=∠A→
因为AC=BC所以再问:请予以纠正你打一遍再答:假设AC=BC又因为∠C=90°,所以∠B=∠A=45°,这与已知条件矛盾故AC≠BC
(1)勾股定理c=根号(4^2+8^2)=20根号2(2)即∠A=30c=2a勾股定理求出a=(10根号3)/3c=(20根号3)/3(3)即∠B=30b=0.5c=10a=10根号3
四边形ABCG是矩形证明:因为△ABC旋转60度后,E在AC上∴∠ACB=∠DCE=60°∴BE=EC=BC易证AE=EC∵∠AED=∠CED=90°,AE∶DE=CE∶DE=1∶√3∴∠EAG=60
∵∠ACB=90°,AC=BC=1,∴AB=2,∴S扇形ABD=30•π(2)2360=π6.又∴Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△
(1)直线l即为所求.  
由三角形BED相似于三角形BCA可得BE:BC=DE:AC即(3-CE):3=DE:4解得DE=12/7再问:第二小题呢再答:还是设正方形的边长是x,利用三角形相似得到MN:AB=CM:CA即x:5=
已知,在Rt△ABC中,∠C=90°,可得:∠A为锐角;因为,sinA=1/2=sin30°,所以,∠A=30°.