在▲ABC中,角A,B,C的对边,,B=3分之2π

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:41:14
在三角形ABC中,已知角A,B,C所对的三条边分别是a,b,c

因为:cosB/cosC=-b/2a+c=-sinB/(2sinA+sinC)所以:2cosBsinA+cosBsinC=-sinBcosC就有:2cosBsinA+cosBsinC+sinBcosC

求解一道三角函数题:在三角形ABC中,a、b、c分别是角A、B、C的对边,

答(1)cosB/cosC=-sinB/(2sinA=sinC)2sinAcosB+sinCcosB=-cosCsinB-2sinAcosB=sin(A+B)=sinAcosB=-1/2B=120`(

在三角形ABC中,角A,B,C的对边分别为a,b,c,且满足sinC

1解由正弦定理sinC/sinA=2b-c/a=c/a即2b-c=c即b=c即三角形ABC是等腰三角形2由(1)知b=c=2,又由三角形ABC的周长为7即a+b+c=7即a=3即cosA=(b^2+c

在△ABC中,角A、B、C的对边分别为a、b、c,其中c=2,C=π3,若△ABC

由余弦定理及已知条件可得a2+b2-ab=4.又∵△ABC的面积等于3.∴12absinC=3,得ab=4.联立方程组a2+b2−ab=4ab=4,解得a=2,b=2.

在锐角三角形abc中,角A,B,C的对边为a,b,c且(

(1)由正弦定理:(2sinA-sinC)cosB=sinBcosC2sinAcosB-sinCcosB=sinBcosCsinBcosC+sinCcosB=2sinAcosBsin(B+C)=2si

在锐角三角形ABC中,角A,B,C的对边分别是a,b,c,

1)y=√3x-1,BC所在直线的方程为y=1tan∠ABC=√3,∠ABC=60°所以:外接圆半径Rb=2RsinBR=AC/(2sin60)=√62)a与c的等差中项为3假设a>ca=6-cb^2

高中三角函数题 在三角形ABC中,角A、B、C的对边为abc

1、cosBsinA/cosAsinB=(3sinc-sinb)/sinbcosbsina=cosa(3sinc-sinb)sin(a+b)=3sinccosacosa=1/3tana=2√2两向量积

在三角形ABC中.abc分别也角ABC的对边.且a+c除以a+b等于b-a除以c.求角B的大小

∵(a+c)/(a+b)=(b-a)/c∴ac+c^2=b^2-a^2∴a^2+c^2-b^2=-ac∴cosB=-1/2∴∠B=120°

在△ABC中,abc分别是角ABC的对边且(a+b+c)(a+b-c)=3ab则cos(A+B)

已知,在△ABC中,abc分别是角ABC的对边且(a+b+c)(a+b-c)=3ab所以,(a+b+c)(a+b-c)=(a+b)²-c²=a²+b²-c

在三角形ABC中,角A,角B,角C所对的边分别用A,B,C表示.

根据正弦定理:a/sinA=b/sinB,sinA=2sinB*cosB,代入得:cosB=a/(2b),根据余弦定理:b^2=a^2+c^2-2ac*(a/2b),2b^3=2a^2b+2bc^2-

一.在三角形ABC中,a,b,c分别是角A,B,C的对边,且(a+b+c)(b+c-a)=3bc

一.在三角形ABC中,a,b,c分别是角A,B,C的对边,且(a+b+c)(b+c-a)=3bc1.求角A的大小2.若a=根号3,b+c=3,求b和c的值1.解析:∵(a+b+c)(b+c-a)=3b

在三角形ABC中,角A,B,C所对的边为a,b,c,

余弦定理:cosB=(a^2+c^2-b^2)/2ac=1/2a^2+c^2-1=ac令t=a+ct^2=a^2+c^2+2ac=1+3ac(a+c)^2>=4acac

在△ABC中,角A、B、C的对边分别为a、b、c.

a=2√2c,b=3c,所以2ab=12√2c^2.

在三角形ABC中,角A,B,C的对边分别为a,b,c,且a

(1)a/sinA=b/sinB根号3a=2bsinAa/sinA=2b/根号3=b/sinBsinB=根号3/2角B=60°(2)cosB=(a^2+c^2-b^2)/2ac=cos60°=1/2(

在三角形ABC中,已知角A,B,C的对边分别为a,b,c且(a+b+c)(b+c-a)=3bc.

(a+b+c)(b+c-a)=3bc[K^2]是K的平方的意思,下面同理,乘号为点乘·(b+c+a)(b+c-a)=3bc(b+c)^2-a^2=3bcb^2+c^2-a^2=bc然后两边同除以2bc

在三角形ABC中,已知角C=60,a,b,c,分别为角A,B,C,的对边,求a/b+c +b/a+c

C=60度余弦定理cosC=1/2=(a^2+b^2-c^2)/(2ab)a^2+b^2-c^2=aba^2+ac+b^2+bc=ab+bc+ac+c^2a(a+c)+b(b+c)=(b+c)(a+c

在△ABC中,a、b、c分别为A、B、C的对边,cos

∵cos2A2=b+c2c,∴1+cosA2=b+c2c,∴c(1+b2+c2−a22bc)=b+c,化为b2+a2=c2.∴C=90°.∴△ABC的形状为直角三角形.

在等腰三角形ABC中,角A、角B、角C的对边分别为a、b、c

分两种情况:当a=3是腰长与底边时,得到b=c或b,c中有一个为3,求出b与c的值,即可确定出三角形周长.