在△abc中,ab=3,o为三角形ABC外心,oa*bc=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:37:05
∵在△ABC中,BC=6,CA=8,AB=10,∴BC2+AC2=AB2,即△ABC是直角三角形,且AB是斜边;∵O是三条角平分线的交点,∴点O是Rt△ABC的内心,∴⊙O的半径r=BC+AC−AB2
直角三角形斜边上的中线等于斜边的一半,用这一个结论就可以证明你的两个问题.这个结论无需再证明.第一个问题,CO为直角三角形ACB斜边AB的中线,故CO=AB/2=AO=BO,则证明O到A、B、C,3点
O为AB中点,所以OA=OB=OC,所以ABC在O的圆上连OD,OD=OB=OC=OA,四点共圆再问:我要过程再答:再简单不过了,总不能把定理再证明一遍吧.在Rt△ABC中,∠C=90度O为AB中点作
(1)作直径AE,连接CE,如图所示,则∠ACE=90°,∵AD⊥BC,∴∠ACE=∠ADB=90度.又∠B=∠E,∴△ABD∽△AEC.∴ABAD=AEAC,即x3=2y12−x.整理得y=−16(
BC=(BA+AC)AO.BC=AO.(BA+AC)=(OB+OC).(BA+AC)(AO=OB+OC)=(OA+AB+OA+AC)(BA+AC)=2OA.(BA+AC)+|AC|²-|AB
AO的长为√5方法为延长CM,BN形成平行四边形,利用勾股定理求解
连接OD、DE、DB,设⊙O半径为r,∵CD为⊙O切线,∴∠ODA=90°,∵BE为⊙O直径,∴∠BDE=90°,∴∠ADE=∠BDO,∵OB=OD,∴∠OBD=∠ODB,∵∠DAE=∠BAD,∴△A
(1)不能重合.假设重合,则有A1O垂直于平面ABC,则A1O垂直于AB,则在RT三角形A1AB中斜边A1A=1
:(1)连接OD,则OD⊥AC,∴∠ODC=∠OBC=90°,∵OC=OC,OD=OB,∴△ODC≌△OBC,∴∠DOC=∠BOC;∵OD=OB,∴∠ODE=∠OED,∵∠DOB=∠ODE+∠OED,
证明:作辅助线DO,因为∠B=90°,以O为圆心OB为半径的圆与AB交于AB于点E,与AB切于点D.,所以∠CDO=90°,又因为OD=DB,OC为公共边,所以三角形DOC全等于三角形OBC,所以∠D
1.∵O为BC中点∴OC=OB∵△ABC为等腰直角三角形∴OA=(1/2)BC∴OA=OB=OC2.连接OA∵△ABC为等腰直角三角形,且O为BC中点∴∠COA=∠B=45°∵AN=BMOA=OB∴△
AE=AF角AEF=角AFE,角BEC=180度-角AEF=180度-角AFE=角AFC角B=180度-角BEC-角BCE角DAC=180度-角AFC-角ACF又因为CE是角平分线.所以角BCE=角A
以AB为直径的半圆?请在检查下你的问题.
先用余弦定理把bc边算出来,然后就可以知道角B或者角C的余弦值,然后再用一次余弦定理就可以知道OA的长度(即OA的模)了.
相离作CD⊥AB于点C,因为S=1/2AC*BC=1/2AB*CD所以CD=5*12/13=60/13>3=r所以AB与圆相离(2)设圆O移动到O~时相切,作O~D⊥AB于点E,OD=3由O~E与CD
连接OD,∵PO=PD,∴OP=DP=OD,∴∠DPO=60°,∵等边△ABC,∴∠A=∠B=60°,AC=AB=9,∴∠OPA=∠PDB=∠DPA-60°,∴△OPA≌△PDB,∵AO=3,∴AO=
答案为:4+√91或,-4+√91分两种情况讨论,画下图就知道了,用垂径定理求解,圆心O在BC边上的高的延长线上
第一问:做辅助线连接B1C,交BC1于点E,连接DE,则DE是△CB1A的中位线,所以有DE∥AB1,又因为DE在平面BC1D内,所以有AB1∥面BC1D第二问:因为四棱锥B-AA1C1D的底面是直角
延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B