在△ABC中AB=AC,D,E分别在AC,AB上,BD=BC,AD=DE=BE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:55:20
如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB于E,DF⊥AC于点F,求△DEF

证明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°.∵D是BC的中点,∴BD=CD.在△BDE与△CDF中,∵∠DEB=∠DFC  ∠B=∠C

在△ABC中,已知,点D、E、F分别在边BC、AC、AB上,

△BDF中∠BFD+∠B+∠FDB=180∠FDE+∠EDC+∠FDB=180又因∠FDE=∠B所以∠EDC=∠BFDBD=CE,BF=CD也可得出△BDF与△CDE相似所以∠DEC=∠BDF在由△B

已知:如图,在△ABC中,AB=AC,∠BAC=120°,点D,E在BC上,AD⊥AB,AE⊥AC

∵AB=AC∠BAC=120°∴∠B=∠C=30°又∵BD=AD∴∠B=∠BAD=30°∴∠ADE=60°又∵AE=CE∴∠C=∠EAD=30°∴∠DEA=60°=∠AED∴△ADE是等腰三角形

如图,在△ABC中,AB=AC,AD⊥BC于点D,点E在AD上

(1)证明:∵AB=AC且AD⊥BC∴AD平分∠BAC即∠BAD=∠CAD证明△ABE全等于△ACE(利用AB=AC,∠BAD=∠CAD,AE=AE)∴BE=CE(2)证明:∵BF⊥AC且∠BAC=4

如图 三角形ABC中 D,E分别在AB,AC上,且AB:DB=AC:EC 求证

证明:(1)因为AB:DB=AC:EC(已知),所以(AB--DB):DB=(AC--EC):EC(分比性质),即:AD:DB=AE:EC.(2)因为AD:DB=AE:EC(已证),所以AD:(AD+

如图:△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D,

(1)∵AB的垂直平分线DE交AB、AC于E、D,∴DA=DB,∵△BCD的周长为8,即BC+CD+DB=8,∴BC+CD+DA=BC+CA=8,∵AC=5,∴BC=3;(2)∵DA=DB,∴∠A=∠

在△ABC中,AB=AC,点D,E分别在AC,AB上,且BC=BD=DE=EA,求角A的度数

过E做AB平行线EM,交PC延长线于M则角M=角B;角ECM=角ACB而AB=AC得B=ACB所以角M=角ECM所以EM=EC因BD=EC所以EM=BD又有角B=角M,角DPB=角EPM所以三角形BD

已知,如图8,在△ABC中,AB=AC,DE‖BC交AB于D,交AC于E.试说明:△ADE是等腰三角形.

因为AB=AC所以∠B=∠C又因为DE//BC所以∠ADE=∠B∠AED=∠C所以∠ADE=∠AED所以等腰三角形ADE

如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,AD+EC=AB.

1.证明三角BDE和CEF全等2.角FEC和角BDE可以转化3.DEF为60°,同2

在△ABC中,AB=AC,点D,E,F分别在AB,BC,AC上,且BD=CE,∠DEF=∠B

存在△BDE全等于△CEF.证明:在△ABC中,AB=AC,所以∠B=∠C;因为∠DEF=∠B,所以∠C=∠DEF;因为∠BEF是△CEF的一个外角,所以∠BEF=∠C+∠CFE;又∠BED+∠DEF

在△ABC中,AB=AC,边BC的中点为D,作等边三角形DEF,是顶点E、F分别在边AB和AC上.

在ABC中,AB=AC,边BC的中点为D.作一个等边三角形DEF,使顶点E,F分别在边AB和AC上,(1),若∠BDE=∠CDF=60°时,EF与BC平行.理由:AB=AC,则∠B=C,又BD=DC,

在△ABC中,AB=AC,D,E分别是BC,AC的中点,△DEC是等腰三角形吗?

是因为DE是△ABC的中位线所以DE=1/2AB又因为CE=1/2AC=1/2AB所以CE=DE所以,△DEC是等腰三角形

如图,在三角形ABC中,AB=AC,点D、E分别是

1,三角形ABE全等于三角形ACD2,三角形BCD全等于三角形CBE3,三角形BFD全等于三角形CFE选第一组证明:因为一,AB=AC(已知)二,角A为公共角三,D,E分别为AB,AC的中点,所以AD

如图,在△ABC中,AB=AC,过腰AB的中点D作AB的垂线,交另一腰AC于E,连接BE.

(1)设∠A=x.∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=x.∵BE=BC,∴∠C=∠BEC=2x.∵AB=AC,∴∠C=∠ABC=2x,∴x+2x+2x=180°,x=36°.即∠

如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,AD+EC=AB.

(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中BD=CE∠B=∠CBE=CF∴△BDE≌△CEF.∴DE=EF,即△DEF是等腰三角形.由(1)知△BDE≌△CEF,∴∠BDE=∠CEF

在△ABC中,AB=AC,点D,E,F分别在AB,BC,AC边上,DE=DF,

1.△ABC∽△DEF应该很好判断AB=AC、DE=DF、

已知如图,在△ABC中,AB=AC,延长AB至D使BD=AB,E为AB的中点,求证CD=2CE

取CD中点F,连接BF,BF就为三角形ABC的中位线,即2BF=AC,又因为2BE=AB,AB=AC,因此,BE=BF,BF//AC,则角CBF=角BCA,又因为等腰三角形ABC,则角ABC=角BCA