在三角形ABC中,A=丌 3,BC=3,D是BC的一个三等分点,则AD的最大值是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:48:08
c2=a2+b2-2abcosC2√3absinC=a2+b2+c2则,2√3absinC+2abcosC=2(a2+b2)即√3absinC+abcosC=a2+b2得2sinC+30)=a2+b2
B^是不是平方,如果是的,那这根本不是三角形
过点B做AC边上的高和AC相交点D设AD为X,则CD=4-x3的平方-X的平方=根号13的平方-(4-x)的平方整理得到解决8X=12X=3/2所以AC上的高是1.5
设三角形的顶点为A、B、C,对应的边长为a、b、c.过顶点B做AC边上的垂线,设垂线长度为h,则有h=asinC.SΔABC=h*b/2=absinC/2正弦定理a/sinA=b/sinB可得b=as
(b+a+c)(b-a-c)=-3ac,且b²=ac,b^2-(a+c)^2=-3b^4b^2-(a+c)^2=0(2b+a+c)(2b-a-c)=02b-a-c=02b+a+c=0(she
角A=角B=3角C,角A+角B+角C=180°,角A=角B=77.1°,角C=25.7°,等腰锐角三角形
已知a=7/3,b=7,c=5,用余弦定理cosA=(b²+c²-a²)/2bc=0.98度
证明:由余弦定理cosB=(a^2+c^2-b^2)/2ac;cosA=(b^2+c^2-a^2)/2bc所以:c(cosB/b-cosA/a)=c{[(a^2+c^2-b^2)/2ac]/b-[(b
正弦定理a/sinA=b/sinB=>a/b=sinA/sinBa*cosA=b*cosB=>a/b=cosB/cosA则cosB/cosA=sinA/sinB即sinAcosA-cosBsinB=0
∵a/sinA=b/sinB又∵A=2B∴a=2b×cosB∵2a=3b∴cosB=(a∧2+c∧2-b∧2)/2ac=3/4∵c=2∴得b=8/5或2a=12/5或3
因为A,B,C成等差数列,所以,2B=A+C,A+B+C=2π所以B角为π/3.又sinA*sinA=cos²B,sin²A=1/4则sinA=1/2推出A角为π/6,所以角C为π
∵cosB/cosA=a/b又:根据正弦定理:a/b=sinA/sinB∴cosB/cosA=sinA/sinB∴cosAsinA=cosBsinB∴2sinAcosA=2sinBcosB∴sin2A
a+c=2b利用正玄定理可以得到sina+sinc=2sinb然后A+C=π-BA-C=π/3可以得到A=2π/3-B/2C=π/3-B/2带到sinA+sinC=2sinB里化简sin(2π/3-B
S=bcsinA/2=1*c*(√3/2)/2=√3所以c=4a²=b²+c²-2bccosA=1+16-2*1*4*(1/2)=13a=√13由正弦定理2R=a/sin
sin(A/2)=cos((A+B)/2),得sin(A/2)=cos(90度-(C/2))=sin(C/2)就有A/2=C/2或A/2=180度-C/2,故A=C(A+C=360度舍去),因此三角形
a/sinA=5b/sinB=4所以sinA=3/5,cosA=4/5sinB=4/5cosA=sinB=cos(90°-B)A=90°-BA+B=90°C=90°S=ab/2=6
cosB=(a^2+b^2-c^2)/2ab=1/2所以B为60度
3平方+5平方小于7平方,钝角,其实可以求出a的对角A,因为c2=a2+b2-2bc*cosA,因为cosA为负数,则A为钝角,怕你没学过三角函数,你就根据7大于边长3,5的直角三角形斜边长来判断他是
当在一个三角形中,内角和便为180度.由角A减角B=角C,得到角A等于角B加角C.由于内角和为180度,则等量代换得到2角A=180度.角A等于90度.