在三角形ABC中,sinA=1 3,C=150,BC=4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:41:21
由正弦定理,a/sinA=b/sinB=c/sinC=2R,得sinA=a/2R,sinB=b/2R,sinC=c/2R从而由sin²A=sin²B+sin²C,得a
由(sinA+sinB)/sinC=(a+b)/c=cosA+cosB=(b^2+c^2-a^2)/2bc+(a^2+c^2-b^2)/2ac得:a^3+b^3+a^2b+ab^2-ac^2-bc^2
sinA+cosA=1/5(sinA+cosA)^2=1/25=1+2sinAcosA2sinAcosA=-24/25(sinA-cosA)^2=1-2sinAcosA=49/25sinA-cosA=
因为sinA^2=1/2所以cosA=(b^2+c^2-a^2)/2bc>=1/2所以0再问:三口
sinB+sinc=√2sinA,而用a/sinA=b/sinb=c/sinc=2R.代入得到b+c=√2a,a+b+c=√2+1.得a=1三角形ABC面积为1/6*sinA.知道bc=1/3有知道b
反例:A=120,B=30,则sinA=cosB=sin60,此三角形显然不是直角三角形
120°利用前两个比例:5(sinB+sinC)=4(sinC+sinA)化简得到sinC=4sinA-5sinB利用后两个比例:6(sinC+sinA)=5(sinA+sinB)化简得到sinA=5
sinA=2sinBcosCsin(B+C)=2sinBcosCsinBcosC+cosBsinC=2sinBcosCcosBsinC-sinBcosC=0sin(C-B)=0B=C,等腰三角形.边b
(sinA)^2+(cosA)^2=1
在三角形ABC中sinA=sin(B+C)所以sinA+cosB=根2/2即sin(B+C)+cosB=根2/2由AC=b=2AB=c=3以及正弦定理a/SinA=b/SinB=c/SinC可知3*s
sinA=sin(A+B)所以有2sin(B+C)*(cosB+cosC)=sinB+sinC2(sinB*cosC+csB*sinC)*(cosB+cosC)=sinB+sinC化解得sin(B+2
由正弦定理,a/sinA=b/sinB=c/sinC=2R,得sinA=a/2R,sinB=b/2R,sinC=c/2R从而由sin²A=sin²B+sin²C,得a
sinA+cosA=1/52sinAcosA=-24/25sinA-cosA=7/5cosA=-3/5是钝角三角形再问:为什么?再答:2sinAcosA=-24/25
由sinA+cosA=1/2,(1)sin²A+cos²A=1(2)(1)两边平方:sin²A+2sinAcosA+cos²A=1/4,将(2)代入:sinAc
sinA=3/5,sinA+cosA0c=2
(sinA+cosA)^2=1+2sinAcosA=1/25所以sinAcosA=-12/25得:cosA
先把上式平方得到sinacosa=-12/25
(sinA+cosA)²=(1/5)²sin²A+cos²A+2sinAcosA=1/251+2sinAcosA=1/25sinAcosA=-12/25
证明:(1)左式=sin²A+sin²B-sin²(180-A-B)=sin²A+sin²B-sin²(A+B)=sin²A+si