在三角形abc中def分别是ab ac bc边上的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:41:32
在三角形ABC和三角形EDF中,D,E,F分别是三角形ABC的三边BC,CA,AB的中点,求三角形DEF相似三角形ABC

证明:D,E分别为BC,AC的中点,即DE为三角形ABC的中位线,则:DE/AB=1/2;同理可证:EF/BC=1/2;DF/AC=1/2.即DE/AB=EF/BC=DF/AC.故⊿DEF∽⊿ABC.

..在直角三角形ABC中,D、E、F分别是三边上的任意点,已知直角三角形三边分别为3、4、5,请问三角形DEF周长的最小

在一个三角形ABC中,有一个内三角形PDE.AB是底边,点P在AB边上,点D在AC边上,点E在BC边上.在某个特殊的位置上,三角形PDE有一个最小值周长.求:当三角形PDE的周长是最小值时,点P处于A

已知def分别是三角形abc中abbcca边的中点,四边形decs菱形

题目应该是decf是菱形吧?再问:四边形decf是菱形,求证,三角形是等腰三角形。再答:上面的解法已经给你了呢·证明得到ac=bc∴是等腰三角形再答:不客气··很高兴能帮到你··希望及时采纳^^

在三角形AGH中,三角形ABC、BCD、CDE、DEF、EFG、FGH的面积分别是19、21、23、25、28、29平方

因为三角形ABC面积比上三角形BCD面积是19比21,且两三角形同高,所以AB比BD等于19比21.如此类推可知AC比CE等于40比23,AD比DF等于63比25,AE比EG等于88比28,AF比FH

在三角形abc中,ab等于ac,点def分别是三角形abc三边的中点,求证四边形ADEF是菱形

证明:因为D,E,F分别是三角形ABC三边的中点所以DE.EF分别是三角形ABC的中位线所以DE=1/2ACAD=BD=1/2ABAF=CF=1/2ACEF=1/2AB因为AB=AC所以AD=DE=E

如图在三角形AGH中,三角形ABc,BcD,cDE,DEF,FGH的面积分别是19,21,23,25,28,29平方厘米

∵△SABC:△SBCD=19:21,且两三角形同高,∴AB:BD=19:21.如此类推可知:AC:CE=40+23,AD:DF=63=25,AE:EG=88:28,AF:FH=116:29.∵△EF

已知在三角形ABC中D、E、F分别是AB、BC、AC的中点三角形ABC的周长与三角形DEF的周长和18cm求三角形DEF

/>∵D、E、F分别是AB、BC、AC的中点∴DE=AC/2EF=AB/2DF=BC/2∴三角形ABC的周长与三角形DEF的周长和=3×三角形DEF的周长=18cm∴DEF的周长=6cm

已知:如图,在三角形ABC和三角形DEF中,AB=DE,AC=DF,∠A=∠D,求证:三角ABC全等三角形DEF.

证明:∵在△ABC和△DEF中AB=DE(已知)∠A=∠D(已知)AC=DF(已知)∴△ABC≌△DEF(SAS)

三角形ABC中,已知:AB=2,BC=1,CA=√3,分别在边AB,BC,CA上取点DEF,使三角形DEF是等边三角形,

过点D作DG平行于BC∵AB=2BC=1CA=√3∴△ABC是Rt三角形,∠C=90°∴DG⊥AC设正三角形△DEF的边长为x∴∠DFE=60°,DE=DF=x∵∠CFE=α,∠CFE+∠DFE+∠A

如图,在三角形ABC与三角形DEF中,AB=DE,BC=EF,AM、DN分别是BC、EF上的中线,且AM=DN,说明△A

因为:AB=DE,BC=EF所以知道两个边相等了又因为AM、DN分别是BC、EF上的中线所以BC=EN又因为AM=PN所以△ABM≌△PEN所以∠ABM=∠PEN所以通过边角边(AB=DE∠ABM=∠

在三角形ABC中,角A:角B:角C,且三角形ABC≌三角形DEF,则角E=

∵三角形内角和为180°∴角A=角B=角C=60°又∵三角形ABC≌三角形DEF∴角E=60°

如图,在三角形ABC与三角形DEF中,∠A=∠D,AB/DE=AC/DF,求证:三角形ABC相似于三角形DEF

两边对应成比例,夹角相等,已经相似了.再问:按其他证明方法证明再答:还有一种方法就是把△DEF搬到△ABC上进行证明了,∵∠A=∠D,把△DEF搬到△ABC上,使A与∠D重合,且DE放在AB上,自然D

已知,在三角形ABC中,AH垂直BC于点H,D,E,F分别是BC,AC,AB的中点.求证:三角形DEF全等三角性HEF

证明:∵AH⊥BC,E为AC中点∴EH=1/2AC∵D为BC中点.E为AB中点∴DF=1/2AC∴DF=EH同理HF=DE∵FE=FE∴△EFH≌△FED

在三角形ABC中abc分别是

你的题不全啊怎么回答啊

在三角形ABC中,BE与CF分别是两边上的高,D是BC中点,你能说明三角形DEF是等腰三角形吗?

在三角形ABC中,BE与CF分别是两边上的高,D是BC中点,你能说明三角形DEF是等腰三角形吗?三角形DEF是等腰三角形.证明如下:因为BE与CF分别是两边上的高,D是BC中点,所以在直角三角形BFC

求分析过程算式下图中,在三角形ABC各边上分别取AD,BE,CF各是AB,BC,CA三条边的三分之一,如果三角形DEF的

6平方厘米连接AE,BF,CD.可看出△BDE的面积是△BEA面积的2/3(等高,底是2比3)△BEA是三角形ABC面积的1/3(等高,底为1比3).所以三角形BDE的面积是三角形ABC面积的2/9.

在三角形abc与三角形def中,ab=de,角a=角d,还要补充条件是( ),就可证三角形abc全等于三角形def(aa

在三角形abc与三角形def中,ab=de,角a=角d,还要补充条件是(∠C=∠F),就可证三角形abc全等于三角形def(aas)

三角形ABC中,角A=90度,AB=AC,D是BC中点,E,F分别在边AB,AC上,角EDF=90°.求证三角形DEF是

连结AD∵∠BAC=90°,AB=AC,D是BC的中点∴△ABC是等腰Rt△∴∠B=∠C=∠BAD=∠DAC=45°∴AD=BD=CD∵∠EDF=90°∴∠EDA+∠ADF=90°∵∠ADF+∠FDC

如右图,在三角形AGH中,三角形ABC,BCD,CDE,DEF,EFG,FGH的面积分别是20,22,23,24,28,

AF:FH=三角形AFG和三角形FGH面积之比(二者同高)AFG面积=20+22+23+24+28=117,FGH面积为26所以AF:FH=117:26,AEF和EFH面积之比为AF和FG之比(二者同