在三角形abc中∠acb=90°CD是高∠a=30°求证bd=四分之一ab

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:52:06
如图在三角形ABC中∠ACB=90,AD是角平分线CH是高,交AD于F 在三角形ABC中∠ACB=90,AD是角平分线,

AD是角平分线,DC=DE,CH是高,DE垂直于AB,CH平行DE,角CDA=90度-角CAD,角CFH=角AFH=90度-角BAD=90度-角CAD=角CDA,CF=CD=DE,四边形CDEF是菱形

如图,三角形ABC中,∠ACB=90°,点D.E在AB上,且

解题思路:利用等腰三角形性质解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/r

如图,在RT三角形ABC中,∠ACB=90,AC=5,CB=12

证明:由于△ABC为直角三角形,且∠ACB=90°,且D在圆上则有AD为直径从而有∠AED=90°因为∠ACB=∠AED=90°,AD=AD,∠CAD=∠EAD所以△ACD全等于△AED所以AE=AC

在rt三角形abc中AC=BC∠ACB=90°点D在三角形ABC内……快……

1证明角BCD等于角ACD=45度(三角形全等和角ACB=90度)2由角CAD和角CBD=15度.算角度.角BDC=180度-角BCD-角CBD=120度3算角CDE=角DCA+角DAC=60度、另外

在Rt三角形ABC中,∠ACB=90°,AC=根号2,cosA=(根号3)/2,如果将三角形ABC绕着点C旋

∠ACB=90°,cosA=√3/2则,A=30°——余下的因为题目不完整,无法进行!再问:旋转至三角形A‘B’C‘的位置,使点B’落在∠ACB的平分线上,A'B'与AC相交于点H,那么线段CH的长等

如图,在三角形ABC中,∠ACB=90°,AC=BC,点D为AB的中点

⑴连接CD,∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵D为AB中点,∴AD=BD=CD,CD⊥AB,∠DCA=∠DBC=45°,在ΔDAE与ΔDCF中:DA=DC,∠A=∠DCF=45°

已知如图,在三角形ABC中,∠ACB=90°,将三角形ABC绕点C按顺时针方向旋转得三角形A'B

这图只有几粒米大.也无法放大.重新上传大一点图,亲

在三角形abc中 ∠acb=90度 ac=bc 直线L

证明:1)∵∠ACE+∠EAC=90°,∠ACE+∠BCF=90°∴∠EAC=∠BCF∵∠AEC=∠BFC=90°,AC=BC∴⊿AEC≌⊿CFBB(AAS)∴AE=CF,EC=BF∴EF=EC+CF

在Rt三角形ABC中,∠ACB=90°,∠A=35°

解题思路:在Rt△ABC中,易求得∠ABC的度数,根据旋转的性质知:∠ABC、∠B′相等,∠A、∠A′相等,BC=B′C,由此可得∠CBB′的度数,进而由三角形的外角性质求得∠BCA′的度数,即可得到

在Rt三角形ABC中,∠ACB=90°,∠A=35°求∠DC

解题思路:根据直角三角形两锐角互余求出∠ABC=55°,再根据旋转的旋转可得∠F=∠ABC,CF=CB,∠BCF=∠ECA,再根据等腰三角形两底角相等求出∠BCF,即可得解.解题过程:

已知:如图,在三角形ABC中,∠ACB=90°,CM是斜边AB上的中线,将三角形ACB绕点C按逆时针方向

∵△A1B1C为△ABC旋转所得∴△A1B1C≌△ABC∴∠B1A1C=∠A∵∠ACB=90°,CM是斜边AB上的中线∴CM=AM∴∠A=∠MCA,∠MCA+∠A1CB=90°∴∠B1A1C+∠A1C

在△ABC中,∠ACB=90°

解题思路:利用圆的知识解题过程:同学你好,请把题目传上来最终答案:略

如图,在三角形ABC中,∠ACB=90°,四边形ABDE,AGFC都是正方形,求证:BG=EC

证明:∵四边形ABDE,AGFC都是正方形∴AE=AB,AC=AG,∠EAB=∠CAG=90°∴∠EAB-∠CAB=∠CAG-∠CAB即∠EAC=∠BAG∴△EAC≌△BAG(SAS)∴BG=EC

在RT三角形ABC中∠ACB=90°COSA=三分之二BC=5求AB

cosA=2/3sin²A+cos²A=1所以sinA=√5/3sinA=BC/ABAB=BC/sinA=5/(√5/3)=3√5

已知,如图在三角形ABC中,角ACB=90度

我会再问:快答案再答:在写再问:好快点再答:先采纳吧!再问:好了吗再问:好了吗

Rt△ABC中,∠ACB=90°,AC=b,BC=a 在三角形内接正方形

由三角形BED相似于三角形BCA可得BE:BC=DE:AC即(3-CE):3=DE:4解得DE=12/7再问:第二小题呢再答:还是设正方形的边长是x,利用三角形相似得到MN:AB=CM:CA即x:5=

如图1-3-7所示,在三角形ABC中,角ACB=90°,

因为∠ACB=90°所以∠A+∠B=90°因为∠AFE=∠B所以∠A+∠AFE=90°所以∠AEF=90°因为CD垂直AB所以∠ADC=90°所以∠AEF=∠ADC所以EF∥CD