在交错级数的判断中,是在n趋于无穷大的时候单调递减嘛

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/18 17:31:10
交错级数级数lnn /n 的敛散性?

根据莱布尼兹判别法,要证两点:1、通项n充分大以后,un单调递减2、n趋于无穷时,un极限为0下面先证1.un>u(n+1).(1)lnn/n>ln(n+1)/(n+1)(n+1)lnn>nln(n+

求交错级数(-1)^n-1 * sin 1/n 的收敛性

n趋向无穷大时,sin1/n与1/n同阶【limsin1/n/(1/n)=1】所以只需要判断(-1)^n-1*1/n的收敛性由莱布尼兹判敛法,1/n趋向于0,且递减,所以,是收敛的

高数无穷级数中的交错级数收敛第一个条件是多余的

我给楼主举个例子:1,-1,1/2,-1/4,1/3,-1/9.1/n,-1/n²...楼主自己验证下是否收敛.给出第一个条件就能通过单调有界来证明级数收敛

证明:级数∑(∞,n→1) sin(π√(n²+1))是交错级数,并证明该级数条件收敛.

首先由和差化积应该知道(-1)^nsin(π√(n²+1)-nπ)=(-1)^nsin(π√(n²+1))*cosnπ=(-1)^(2n)*sin(π√(n²+1))=s

对于发散的交错级数如何判断,如何用莱布尼茨判别法?

答:1.满足bn→02.满足同号的项an>a(n+1),bn>b(n+1).设an为正项,bn为负项.这时候满足条件收敛.绝对收敛是交错级数加上绝对值后仍然收敛.可再用各种判别法判定.比如:交错级数∑

莱布尼茨定理是交错级数收敛的充要条件吗

不是.莱布尼茨判别法:若交错级数满足下述两个条件:(1)交错级数的数列收敛(2)该数列的极限为0

(-1)^n/(2n+1)的无穷交错级数求和

直接在arctanx的Maclaurin展开当中代x=1即可楼上的做法也是对的,只不过需要引进虚数及Euler公式了

交错级数的敛散性问题一个交错级数如果绝对值发散,就可以判断它是条件收敛吗,如果不能,则其原函数的敛散性如何判断

若交错级数收敛但取绝对值后级数发散,那么该交错级数就是条件收敛的.条件收敛的定义就是收敛而不绝对收敛.但是去掉原级数收敛的条件后结论不成立.例如a(n)=(-1)^n,取绝对值后发散但该交错级数不收敛

在判断任意项级数敛散性时是不是必须先判断其正项级数的敛散性?

在判断任意项级数敛散性时一般是先判断该级数是否绝对收敛,若非绝对收敛,再判断其是否条件收敛的.

利用级数收敛的必要条件证明2^n*n!/n^n的在n趋于无穷大时极限为0

再答:如果满意,请点右上角“采纳答案”再问:级数x^n/n+1求和函数,收敛区间要对0另外讨论吗?老师讲没有提过,但答案里面是当x为0时函数为1,有点疑惑再答:幂级数在x=0始终收敛啊再问:嗯,不过这

求一道交错级数的敛散性问题

图片我看不到,只能通过你的描述来理解题意.第一题,因为当n趋于无穷大时,级数的极限不趋向于0,所以肯定发散,因为级数收敛的一个必要条件就是n无穷大时,级数项一定要趋近于0.关于你的补充问题,“对于幂级

请问在判断任意项级数(不是交错级数)对应的正项级数发散时,怎么判断该级数的敛散性?

你所说的不是交错级数的任意项级数,那么它对应的正项级数就应该是指它加了绝度只之后的级数吧.那么既然你已经判别出其对应的正项级数是发散的,那么原来的级数和对应的正项级数有相同的敛散性.再问:条件收敛呢?

关于莱布尼茨判别法判断交错级数发散的问题?

不是充要条件,(反例实际上很好举,只要对适当的收敛的莱布尼兹级数进行换项就可以了)

请问用莱布尼茨判别法判定交错级数的时候 是否要保证交错级数变为开头是(-1)^(n-1)如果是(-1)^n行不行

可以的,级数收敛与否和级数的前有限项没有关系,只要满足那两个条件就行

交错级数敛散性判断, 

这怎么是交错级数?是二次积分:  ∫[0,1]dy∫[0,y]cosy²dx  =∫[0,1]ycosy²dy  =(1/2)siny²|[0,1]  =(1/2)sin

【级数求助】莱布尼茨是交错级数收敛的充分条件?

为什么你问的问题总那么古怪呢1,那是定理,满足莱布尼茨定理了,你说能不能推出交错级数收敛,你说是不是充分条件?定义定理一般都是充分条件,如果不是的话,那定义定理就是错的2,A是中国人推出A是人B是外国

求交错级数(-1)^n-1 * sin( 1/n )的收敛性

y=sinx(0,π)是递增函数;y=1/x(0,1)是递减函数;故sin1/n是递减的.然后,根据莱布尼茨定理交错级数(-1)^n-1*sin(1/n)收敛.

证明级数收敛的一个必要条件是,n趋于无穷时,其通项趋于0.

把调和级数看成一个数列,数列通项是调和级数前n项和数列收敛的充要条件是:柯西判别法(什么名字记不清楚了)对于调和级数的这个数列,满足∀ε>0,存在n>0,∀m>n,有1/n+1