在图14中,正方形aobd的边ao,bo在坐标轴上,若它的面积为16
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:47:01
证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE
由于正方形的对角线是边长的2倍,则以正方形ABCD的对角线AC为边长的正方形的面积是原正方形的面积的2倍.
a+b=30a-b=20a=25b=5∴25-﹙20-5﹚=500﹙平方单位﹚.
甲大,甲的面积是所在三角形的一半,而乙没有一半,把正方形旁边的三角形折进去就知道了
正方形分三份每份六点二五把上面的小三角形和下面的小三角形拼起来面积就是12.5这个小正方形的对角线就是你所求的ABCD就用小正方形面积乘以二再开方得到五………………
(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E
图呢?哦自己画选B.因为你看,连接这个点,和这个点,所以这三个点组成三角形.再看那个点,那个点和那个点又组成一个三角形,故我画的这部分阴影面积为10,总面积为16,所以是5:8
没有图出来.再问:点击[http://pinyin.cn/1qS1yQN8ogN]查看这张图片。[访问验证码是:424588请妥善保管]再答:你可以先求出三角形ABC的面积,可以用正方形总面积减去周围
面积为2,边长√2,面积为5,边长√5.
EH^2=(1/3AB)^2+(2/3AB)^2=5/9AB^2EH^2/AB^2=5/9小正方形与大正方形的面积之比为5/9
方法1:利用割补法可看出阴影部分的面积是10个小正方形组成的,所以阴影部分面积与正方形ABCD的面积比是10:16=5:8;方法2:12+32=10,(10)2:42=10:16=5:8.故选A.
设正方形的边长为x,则x²+x²=(2√2)²2x²=8x²=4x=2所以正方形的边长为2
要想得到面积为5的正方形,边长必须是√5,所以红线连成的图形就是面积为5的正方形:
用面积法S(正方形)=9S(△ABC)=S(正方形)-S(△ABC外三个三角形)=9-[(3*2)/2+(3*2)/2+(1*1)/2]=5/2又S(△ABC)=(AB*CD)/2由勾股定理AB=√(
(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,所以△EAD≌△FDC,故DE=CF,∴∠EDA=∠FCD,又∵∠DCF+∠DFC=90°,∴∠ADE+∠DFC=90°,∴∠DG
如图,由正方形的性质,∠1=∠2=∠3=∠4=45°,所以,四个角所在的三角形都是等腰直角三角形,∵正方形的边长为6,∴AC=62,∴两个小正方形的边长分别为13×62=22,12×6=3,∴S1与S
答:正方形共有4条对称轴:中间水平、中间竖直和两条对角线显然,只有左上角到右下角对角线作为对称轴时,下图红色格子涂黑可以形成对称图像.因此仅有1个满足题意的格子再问:可是为什么有的人选两个呢。。这题是
设AC、DM的交点是P,因为AM//DC,所以角PDC=角PMA,角DCP=角MAP,所以三角形DPC相似于三角形MPA所以它们的高之比h1:h2=1:2设正方形的边长为a,h1=1/3a,h2=2/