在平行四边形abcd中,点m,n在
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:11:35
1.设三角形DME的面积是x,则三角形CEB面积也是x.S△MEB=1/4-x;S△DEC=1/2-x根据S△DME/S△MEB=S△DEC/S△CEB列出关于x的方程求出x=1/6,所以S阴影=1/
在ab上取点q使得pm:ma=bq:qa由相似即可得到mq‖pbnq‖ad‖bcmq与nq交与点q(说明两直线不平行)pb、bc交与点b得到平面mnq‖平面pbc所以mn//平面pbc
是证明BC=2AB作MN//AB交CE于F,交BC于N,连结CM则F、N分别为EC、BC的中点又CE⊥AB∴CE⊥MN则MN垂直平分CE∴∠CMN=∠EMN∵MN//AB∴∠EMN=∠MEA(内错角)
解题思路:先证明四边形是平行四边形,再根据平行四边形和角平分线的性质可得AB=BE,AB=AF,AF=BE,从而证明四边形ABEF是菱形解题过程:证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠
我用方程做的,应该还有更简便的方法:设三角形DME的面积是x,则三角形CEB面积也是x.S△MEB=1/4-x;S△DEC=1/2-x根据S△DME/S△MEB=S△DEC/S△CEB列出关于x的方程
显然,三角形DAM的面积为1/4又显然三角形EBM和三角形EDC相似,并且MB=CD/2,所以三角形EDC的面积是三角形EMB面积的4倍.设三角形EMB面积为x,则三角形EDC的面积为4x,又三角形D
∵AB∥CD∴△ABN∽△MDN∴AN:MN=AB:MD=2:1∴S△DMN:S△ADN=1:2,即S△DMN=13S△ADM又S△ADM=14S▱ABCD故S△DMN:S▱ABCD=1:12.故选A
MN和EF相互平分,连接EM、MF、FN、NE因:AE=CFAN=AB-BNCM=CD-DMAB=CDBN=DMAN=CM角A=角C所以:三角形AEN与三角形CFM全等EN=FM同理可证:EM=NF所
证明:作MN//AB交CE于F,交BC于N,连结CM则F、N分别为EC、BC的中点又CE⊥AB∴CE⊥MN则MN垂直平分CE∴∠CMN=∠EMN∵MN//AB∴∠EMN=∠MEA(内错角)又∠EMD=
四边形BMDN是平行四边形证明如下:连接BD交AC于点O∵ABCD是平行四边形∴BO=DO,AO=CO∵AM=CN∴OM=ON∴四边形BMDN是平行四边形(对角线互相平分的四边形是平行四边形)
证明:(以下用---代表推出箭头)四边形ABCD是平行四边形---AD//BC---角MAO=角NCO[1].又四边形ABCD的对角线AC,BD相交于O---AO=OC[2],AC,MN相交于点O--
∵四边形ABCD是平行四边形AD‖BC,AD=BC又∵点M,N是ED,BF的中点,AE=CF∴EM=NF∴四边形MFNE是平行四边形(对边平行且相等的四边形是平行四边行)
因为ABCD是平行四边形,∴AB=CD,AB∥CD∵AE=CF,AB∥CD∴BE=DF,BE∥DF∴DEBF是平行四边形∴DE=BF,DE∥DF∵M.N分别是DE.BF的中点,DE∥DF∴ME=NF,
手机答题,字数限制.第一题:证明三角形ABN全等三角形DCM得AN=CM.又因为AM=NC.所以ANCM为平行四边行第2题:证明三角形AED全等三角形CFB得BF=DE.NF=ME再证明三角形AEN和
垂直.平行四边形ABCD,∠DCO=∠CAB=∠MAO,三角形MAC是等腰三角形,对角线AC,BD交于点o,OA=OC,等腰三角形三线合一,MO垂直AC
证明:∵OM⊥BC,BM=CM∴OB=OC∵ABCD是平行四边形∴OA=OC,OB=OD∴BD=AC∴ABCD是矩形(对角线相等的平行四边形是矩形)
题目错啦,角B和角D是平行四边形对角,应该相等.如果角D等于2倍角A或2倍角C,那么该平行四边形为一锐角是60度的菱形,因此AB=4.哈哈,选我选我~
因AM=1/2AD,NC=1/2BC,而AD=BC,所以AM//=NC,故ANCM为平行四边形
第四个明显不对啊如果对的话,那么S三角形ADP=1/2*S三角形ADB也就是说P为BD中点了DN:AB=1:2所以DP:PB=1:2PB=PQ+BQ同理BQ:DQ=1:2DQ=DP:PQ通过上面两个比