在欧氏空间中对任意的向量证明||平行四边形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:53:03
向量证明直线平行面在平行六面体AC1中,O是B1D1中点,求证,B1C//ODC1用平面向量、空间向量求证注意 有向量的

可以这样啊,设向量AB=向量a,向量AD=向量b,向量AA1=向量c用a,b,c把BC1表示出来,在把OC1、OD、DC1的任意两条表示出来(设为向量c,向量d).最后证明存在唯一有序实数对(x,y)

用向量方法证明空间四边形对角线相互垂直的充要条件是对边平方和相等

为方便,下面#后的代表向量.#CD=#BD-#BC,#AC=#BC-#BA,#AD=#BD-#BA.对角线的点积:#AC·#BD=(#BC-#BA)·#BD=#BC·#BD-#BA·#BD两组对边平方

已知点M在平面abc内,并且对空间任意一点O,x向量OA+1/2向量OB+1/3向量OC=向量OM.求X的值?

1/3向量OA+1/3向量OB+1/3向量OC=向量ODD是三角形ABC中线交点所以D在平面内(x-1/3)向量OA+1/6向量OB=向量OM-向量OD(x-1/3)向量OA+1/6向量OB=向量DM

设σ是欧式空间V的一个线性变换,证明:σ是正交变换的充要条件是对V的任意向量=.

注意σ(ζ)=0等价于0==,即ζ=0用上述性质直接验证σ是线性变换即可:σ(ζ+η)-σ(ζ)-σ(η)=0σ(kζ)-kσ(ζ)=0

线性代数题欧式空间设a1,a2…am是n维欧式空间V的一个标准正交向量组.证明对V中任意向量a有【求和(i从1开始到m)

记Q=【a1,a2,...,an】是正交阵,其中am+1,am+2,...,an和a1,...,am组成V的正交基,因此有Q^Ta模长的平方=a^TQQ^Ta=a^Ta=a的模长的平方.注意到要证不等

用空间向量法证明:空间四边形对角线垂直的充要条件是两组对边的平方和相等

设四顶点对应向量a,b,c,d.对角线垂直(a-c)*(b-d)=0(*表示点积)a*b+c*d=b*c+d*a(a-b)*(a-b)+(c-d)*(c-d)=(b-c)*(b-c)+(d-a)*(d

用到空间向量的几何证明题

证明平面BDE的法向量与向量AM垂直即可!(由于AM不在平面上比较简单(用混合积即可),故不赘述)证明看下图:

怎么证明,在一个秩为r的向量组中,任意r个线性 无关的向量可构成一个...

这个是定义啊.秩就是极大线性无关组包含的向量的个数.

设a1,a2...am是n维欧式空间V的一个标准正交向量组,证明:对V中任意向量a有 ∑(a,ai)^2

将a1,a2...am扩充为V的标准正交基a1,a2...am,...,an任一向量a可表示为a=k1a1+k2a2+...+kmam+...+knan(a,ai)=ki||a||^2=(a,a)=(

证明:在n维欧式空间中,两两成钝角的非零向量不多于N+1个

用反证法吧.假设a1…an+2(下标,后同)两两互为钝角n维空间任意n+1个向量线性相关,即存在不全为0的数k1….kn+1使得k1a1+…+kn+1an+1=0两边跟an+2内积,k1<a1,an+

线性代数证明题设v是某数域上的n维线性空间,证明存在v的无限子集s,使得s中任意n个向量都是线性无关的.写的详细再加五十

设V是数域K上的n维线性空间,可知V同构于向量空间K^n,故只需讨论V=K^n的情形.考虑V的子集S={(1,a,a^2,a^3,...,a^(n-1))|a∈K}.K作为数域,总是无限集,故S也是无

在斜的空间坐标系中如何利用向量法证明两条直线垂直?

把两条直线用向量表示出来、然后相乘为零就证明两直线垂直了…

用向量法证明:空间四边形对角线垂直的充要条件是两组对边的平方和相等

为方便,下面#后的代表向量.#CD=#BD-#BC,#AC=#BC-#BA,#AD=#BD-#BA.对角线的点积:#AC·#BD=(#BC-#BA)·#BD=#BC·#BD-#BA·#BD两组对边平方

空间向量证明题!已知点O是平行六面体ABCD-A1B1C1D1对角线的交点,点P是空间任意一点.证明:向量PA+向量PB

楼上想法够搞笑的,是向量PA之类的PA还能分家啊?PO=PA+AO=PB+BO=PC+CO=PD+DO=PA1+A1O=PB1+B1O=PC1+C1O=PD1+D1OAO+C1O=BO+D1O=CO+

在△ABC中,若对任意的实数m,都有|向量BA-m*向量BC|≥|向量AC|,则△ABC是什么三角形

不等式两端同时平方BA²-2m×BA×BC×cosB+BC²≥AC²=BA²-2×BA×BC×cosB+BC²整理得2×BA×BC(1-m)cosB≥

电偶极子对空间任意点的电场的证明(高中物理竞赛)

不是分解力,是将电偶极子的极径分解到任意点与中点的连线上.

利用向量方法证明:空间四边形对边中点的连线交于一点

空间四边形ABCD,AB、BC、CD、DA中点分别为E、F、G、H.EG、FH中点分别为M、N.向量AM=(AE+AG)/2=[AB/2+(AC+AD)/2]/2=(AB+AC+AD)/4同理可得AN

空间向量四点共面的证明

你题目错了应该是求证ABCP四点共面用向量方法证明四点共面应转化为不共线两向量共面的问题14点构成2直线平行2有3点共线34点构成的2个向量共线满足任一条件

N维向量空间向量的秩,证明题

充分:可证(1)A可以由a1,a2.ar表示(2)a1,a2.ar是线性无关的,则可知a1,a2.ar是最大线性无关组.(1)A与a1,a2.ar等价说明A中任何向量可由a1,a2.ar表示.(2)反