在等腰直角三角形abc中ab=ac=2ad是bc边上的中线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:46:13
小朋友,题没完哦.
△ABC是等腰三角形,AD⊥BC,AB=AC∴AD平分∠BAC∵DE⊥ABDF⊥AC∴DE=DF(角平分线上的点到角两边距离相等)在四边形AEDF中,∠EAF=∠AED=∠AFD=90°∴∠EDF=9
如图②,恕我眼拙,点D在AB边上么?题目有问题啊还有,BF=CD,且BF⊥CD∵ABC等腰直角△,+O为AB中点∴BO=CO=AO,角BOF=角COD同理:FO=OD=OE∴△BOF≌△COD∴BF=
证明:在RT△AHG和RT△CEG中:∠AHG=∠CEG=90°∠AGH=∠CGE(对顶角)∴RT△AHG∽RT△CEG(角角)∴∠GAH=∠GCE∵CH⊥AB,△ACB是斜边为AB的等腰RT△∴AH
证明:作DE⊥BC于点E∵△ABC是等腰直角三角形∴AB=AC,∠C=45°∵AD平分∠ABC∴∠ABD=∠EBD∵∠A=∠BED=90°,BD=BD∴△ABD≌△EBD∴AB=BE,AD=DE∵DE
连接BD,∵等腰直角三角形ABC中,D为AC边上中点,∴BD⊥AC,BD=CD=AD,∠ABD=45°,∴∠C=45°,又DE丄DF,∴∠FDC=∠EDB,∴△EDB≌△FDC,∴BE=FC=3,∴A
证明PE=DO因为,∠B=90度,AB=BC,所以三角形ABC为等腰直角三角形,又O是AC上的中点,所以BO垂直AC,∠C=∠CBO=45°由已知PB=PD可知△BPA为等腰三角形,∠PDB=∠PBD
延长ED交AC的延长线于M,连接FC、FD、FM,∴四边形BCMD是矩形.∴CM=BD.又△ABC和△BDE都是等腰直角三角形,∴ED=BD=CM.∵∠E=∠A=45°,∴△AEM是等腰直角三角形.又
设CA=CB=3,则A(3,0),B(0,3),E(2,1),F(1,2),C(0,0)CE|=|CF}=根号5,CE*CF=2+2=4,cos∠ECF=4/5,sin∠ECF=3/5,tan∠ECF
因为BA等于EACA等于FA角BAC等于角EAF所以直三角形BAC全等于直角三角形EAF因为AD垂直BC所以三角形ADC相似于三角形EAF所以角AEM等于角DAC又因为角EAM等于角DAC所以角MAE
连接BD,分别用ASA证明△BDE≌△CDF,△BDF≌△ADE,即可将边CF转换为BE,AE转换为BF,在Rt△BEF中,用勾股定理求得EF=5
证明:△ABC为等腰直角三角形,所以∠A=∠B=45∠DME=45,所以∠AMD+∠BME=135∠AMD+∠ADM=180-∠A=135所以∠BME=∠ADM又有∠A=∠B所以△AMD∽△BEM,A
将△APD逆时针旋转90°,此时AB与BC重合,设D是旋转后P,连结PD,交BC于E∴△ABD≌△CBE∴∠BAD=∠BCE∵∠BEA=∠DEC∴∠ABC=∠EDC∴∠EDC=90°∴△PDC是Rt△
因为ACD是等腰三角形所以PC=AC=√2角ADC=45°所以BDC=135°在三角形BDC中BC/sin135°=PC/sin30°则BC=2
将△APD逆时针旋转90°,此时AB与BC重合,设D是旋转后P,连结PD,交BC于E∴△ABD≌△CBE∴∠BAD=∠BCE∵∠BEA=∠DEC∴∠ABC=∠EDC∴∠EDC=90°∴△PDC是Rt△
证明:因为∠ACB=90度,所以∠ACE+∠BCF=90度因为AE⊥CD所以∠ACE+∠CAE=90度所以∠CAE=∠BCF又因为AC=BC,∠CEA=∠CFB=90度所以△ACE≌△BCF(AAS)
由向量AB与向量BC垂直且等长AB.BC=0,故求得BC=(3,-1)或(-3,1).AC=AB+BC=(1,3)+(3,-1)=(4,2)或AC=(1,3)+(-3,1)=(-2,4)
Sabc=32..所以刚好一半一半.AP=4再问:请问是怎么求的?再答:等腰直角。。CA平行于RP。。。所以RP垂直于AB。。所以那两个小三角形也是等腰之间三角形啦。。。然后S两个△之和是16.。。。
如图:(x-c)²+y²=9.x²+(y-c)²=7. x²+y²=1.消去x,y
反复运用勾股定理、等量代换就可以了.PA²=(AD+PD)²1PB²=(BD-PD)²2其中AD=BDPC²=CD²+PD²=AD