在等腰直角三角形abc中∠acb=90°de分别为直线ab上两点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:21:19
解答在图片里
证明:连接AD∵AB=AC,∠BAC=90∴∠B=∠C=45∵D为BC的中点∴AD=BD=CD(直角三角形中线特性),AD⊥CD,∠BAD=∠CAD=∠BAC/2=45(三线合一)∴∠ADF+∠BDF
△ABC是等腰三角形,AD⊥BC,AB=AC∴AD平分∠BAC∵DE⊥ABDF⊥AC∴DE=DF(角平分线上的点到角两边距离相等)在四边形AEDF中,∠EAF=∠AED=∠AFD=90°∴∠EDF=9
根据正弦定理,BC/sin45°=AC/sin30°∵AC=√2∴BC=sin45°·AC/sin30°=√2·√2/2÷1/2=2
因为CF垂直于BF,AE垂直于CF所以∠CFB等于∠AED等于90度又因为∠ADE等于∠BDF所以∠EAD等于∠DBF因为三角形ABC是等腰直角三角形所以∠CAB等于∠CBA等于45度,AC等于BC因
两个垂直的BD=2MN;建立坐标,以B点为原点,BA为y轴,BC为x轴,假定BC=1,AD=X则可以写出坐标B(0,0),D(X,1),N是BD中点所以坐标N(X/2,1/2)M点(【1+X】/2,【
因为角ABD=角CBD=二分之一角ABC=22.5度角ADB=角ADC角BAD=角DCE=90度所以角ACE=角ABD=22.5所以角BCF=角BCA+角ACF=67.5所以角F=180-角ABC-角
证明:在RT△AHG和RT△CEG中:∠AHG=∠CEG=90°∠AGH=∠CGE(对顶角)∴RT△AHG∽RT△CEG(角角)∴∠GAH=∠GCE∵CH⊥AB,△ACB是斜边为AB的等腰RT△∴AH
证明:作DE⊥BC于点E∵△ABC是等腰直角三角形∴AB=AC,∠C=45°∵AD平分∠ABC∴∠ABD=∠EBD∵∠A=∠BED=90°,BD=BD∴△ABD≌△EBD∴AB=BE,AD=DE∵DE
因为BA等于EACA等于FA角BAC等于角EAF所以直三角形BAC全等于直角三角形EAF因为AD垂直BC所以三角形ADC相似于三角形EAF所以角AEM等于角DAC又因为角EAM等于角DAC所以角MAE
可以做再答:延长ef交ac于h连接gh.由于acb等腰直角efb等腰直角所以eb垂直bc又因为ef垂直ebac垂直bc所以ehcb是矩形由于eh垂直ac(矩形),角cab是45度,所以ahf是等腰直角
连接BD,分别用ASA证明△BDE≌△CDF,△BDF≌△ADE,即可将边CF转换为BE,AE转换为BF,在Rt△BEF中,用勾股定理求得EF=5
证明:△ABC为等腰直角三角形,所以∠A=∠B=45∠DME=45,所以∠AMD+∠BME=135∠AMD+∠ADM=180-∠A=135所以∠BME=∠ADM又有∠A=∠B所以△AMD∽△BEM,A
AD为∠BAC的角平分线,DC⊥AC,DE⊥AB,所以CD=DE,又因为三角形ABC为等腰直角三角形,所以AC=BC.BD+DE=BD+DC=AC再问:已知AB=15cm求三角形DBE的周长再答:三角
过P点分别做ac,bc垂线pf,pgP为AB中点,所以pf=pg角dpe=角fpg=90度所以角fpd=角gpe,pf=pg,角pfd=角pge=90度所以pdf与peg全等所以pd=pe
由向量AB与向量BC垂直且等长AB.BC=0,故求得BC=(3,-1)或(-3,1).AC=AB+BC=(1,3)+(3,-1)=(4,2)或AC=(1,3)+(-3,1)=(-2,4)
如图:(x-c)²+y²=9.x²+(y-c)²=7. x²+y²=1.消去x,y
反复运用勾股定理、等量代换就可以了.PA²=(AD+PD)²1PB²=(BD-PD)²2其中AD=BDPC²=CD²+PD²=AD
因为等腰直角三角形的斜边为10cm,所以斜边上的高为12×10=5(cm),所以三角形的面积=12×10×5=25(cm2).答:△ABC的面积是25cm2.故答案为:25.