如下图,等边△ABC内有一点P若点P到顶点A,B,C,的距离,分别为3,4,5
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 02:33:01
(1)证明:作PH⊥CM于H,∵△ABC是等边三角形,∴∠APC=∠ABC=60°,∠BAC=∠BPC=60°,∵CM∥BP,∴∠BPC=∠PCM=60°,∴△PCM为等边三角形;(2)∵△ABC是等
平行条件→S1,S2,S3三个三角形相似根据相似加上S1=S2→PD=PE,AF=DF,AI=EI→S△ADE=4S1=4相似加上S2=2S1→HG=√2PD,HG边上的高H=√2PD边上的高hS(B
参考一下:这个题目:O是等边三角形ABC内一点,OA=3.OC=4.OB=5.求角AOC?将ΔAOB绕点A逆时钟旋转60°得到三角形AO'C,连接OO’∵ΔAO'C≌ΔAOB∴O'C=OB,O'A=O
延长BP至E,使PE=PC,连接CE,∵∠CPE=∠BAC=60°,∴△PCE是等边三角形,∴∠PCE=60°=∠APC,PE=CE=PC=28,∴PD∥CE,∴PDCE=BPBE,∴PD28=212
以b将三角形abp旋转到三角形cbp次,使a旋转到c,连pp次,易知三角形pbp次为等边三角形.又因为pc为5,pp次等于bp等于4,cp次等于ap等于3,所以角pp次c为90度,所以角apb等于角b
解;(1)∵PA+PB>ABPB+PC>BCPC+PA>AC,∴(PA+PB+PB+PC+PC+PA)>AB+BC+AC,∵AB=BC=AC,∴2(PA+PB+PC)>3AB∴PA+PB+PC>32A
你的图中辅助线已经做好了呀!【证明】作△ACP'≌△ABP,连PP'∵∠CAP'=∠BAP∴∠PAP'=∠BAC=60°∵AP'=AP∴△APP'是等边三角形∴PP'=AP=3且∠AP'P=60°∵P
把△BPC绕点C顺时针旋转60°至△ACD∵△ACD是由△BPC顺时针旋转60°而得∴△ACD≌△BPC∴∠BPC=∠ADC,PC=CD,BP=AD∵∠PCD=60º∴△PCD是等边三角形∴
AM=PD+PE+PF证明:S△ABC=BC*AM/2等边三角形中三边相等S△ABC=PD*BC/2+PE*AC/2+PF*AB/2=(PD+PE+PF)*BC/2∴BC*AM/2=(PD+PE+PF
证明:连接PA,PB,PC则S△ABC=S△PAB+S△PBC+S△PAC∵S△PAB=1/2AB*PES△PBC=1/2BC*PDS△PAC=1/2AC*PFS△ABC=1/2BC*AH∴1/2AB
把三角形APC顺时针旋转60度,AC与AB重合,得到一个三角形AP'B连结PP',AB与PP'相交于D,则
△APC与△BPE存在旋转关系.在△BPE与△BPC中BP=BP∠PBA=∠PBCBE=BC所以两个三角形全等所以∠PEB=∠PCB,PC=PE且∠PCA=∠PCB则∠PEB=∠PCA在等边三角形AB
将三角形BPC绕着B点逆时针旋转60度(或者换一个说法,在三角形外取一点Q,使三角形PBD相似于三角形QBA)这时候再连结QP亮点那么很容易得到三角形PQB是正三角形那么QP变长就是4三角形PQA的三
如图,连接DP,∵△ABC是正三角形,∴∠BAC=60°,∵△ADC≌△APB,∴∠DAC=∠PAB,DA=PA,DC=PB,∵∠PAC+∠BAP=60°,∴∠PAC+∠CAD=60°,∴△DAP是正
作三边的中垂线,交点P肯定是其中之一,以B为圆心,BA为半径画圆,交AC的中垂线于P1、P2两点,作△P2AB、△P2BC、△P2AC,它们也都是等腰三角形,因此P1、P2是具有题目所说的性质的点;以
因为没图,设D,E,F分别在AB,BC,CA上,连接PA,PB,PC则△ABC被分为3个小三角形,△PAB,△PBC,△PCA△ABC的面积=△PAB的面积+△PBC的面积+△PCA的面积设△ABC的
1、做PF∥BC交AC于F∴等边三角形APF∴PF=AP=CQ∴△CQD≌△FPD∴DQ=DP2、ED=EF+FD=AF+DC=AC/2==BC/2=2再问:详细一点啊过程再答:1、PF∥BC∴∠AP
http://zhidao.baidu.com/link?url=F40Rw3xvCRgl8Mz-8GALLwUSo-6j5y0g-qDbRbsYANLRUyYIh8uWusogHgeAtpke7OR
把△BCP绕B点逆时针旋转60°得△BAD,由于△BAD≌△BCP,可知△BDP为等边三角形于是DP=BP=2√3,可得AD²+DP²=AP²,所以∠ADP=90°,∠A
角BAP+角PAC=60度角CAQ=角BAP(旋转过来的,角度不变)因此角CAQ+角PAC=60度又因为AP=AQ(也是因为旋转,长度不变)所以三角形APQ是等边三角形所以PQ=AP=3因为三角形AQ