5sinx x求0到无穷的积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:36:01
e的(-x)次方从负无穷到0的定积分怎么求

e的(-x)次方从负无穷到0的定积分是-1/2+1/2*e(无穷次方)即:正无穷从答案上来看原函数应为:F(x)=(1/2)[∫e^(x)dx(积分下限为负无穷,上限为0)]+(1/2)[∫e^(-x

积分∫AX/(1+X)^4=1,x的范围是0到正无穷,求A的表达式

先计算积分:∫[0→+∞]x/(1+x)^4dx=-(1/3)∫[0→+∞]xd[1/(1+x)³]分部积分=-(1/3)x/(1+x)³+(1/3)∫[0→+∞]1/(1+x)&

求定积分∫x²e^-2λx dx 积分区间0到正无穷求积分

当λ≥0时,∫x²e^(-λx)dx不存在当λ>0时,∫x²e^(-λx)dx=[-x²e^(-λx)/λ]│+(2/λ)∫xe^(-λx)dx(应用分部积分法)=(2/

求定积分∫e^x(sinx/x)dx积分区间为0到+无穷.

用软件给积分了一下,没有好看的初等结果感觉用留数定理也搞不定.你可以尝试用级数展开吧不过这个感觉也希望不大因为软件都算不出刚刚请教了一下高手:这个积分改为-infy^0就可以积出来了,可以参考数学分析

求在0到正无穷的范围内1/(4+x^2)的广义积分

∫[0,+∝]dx/(4+x^2)=(1/2)arctan(x/2)|[0,+∝]=(1/2)(π/2)=π/4再问:能不能详细的写一下求1/(4+x^2)的步骤。。。。。再答:∫dx/(4+x^2)

怎么求E的负X平方次方在负无穷到正无穷间的广义积分

I=[∫e^(-x^2)dx]*[∫e^(-y^2)dy]=∫∫e^(-x^2-y^2)dxdy转化成极坐标=[∫(0-2π)da][∫(0-+无穷)e^(-p^2)pdp]=2π*[(-1/2)e^

求∫x/(1+x^2)dx在负无穷到正无穷上的定积分

反常积分,发散再问:谢谢!!!那这个要怎么证它发散啊???再答:原函数是(1/2)ln(1+x^2),在+∞的值是﹢∞,不是有限值,故广义积分发散。

反常积分积分 0到正无穷 (sinX/X)^2

由分部积分将原积分化为2sinxcosx/x从0到无穷积分上式等于sin2x/x由变量替换可化为sinx/x从0到正无穷积分该积分为Dirichlet积分其值为pai/2,pai为圆周率至于Diric

求无穷限的广义积分(0到正无穷)1/(x^2+1)^2/3 dx

∫e^(-px)*sin(ux)dx=1/(-p)∫sin(ux)de^(-px)=1/(-p移项便会求的积分∫e^(-px)*sin(ux)dx=∫sin(ux)d[(-1/p)e

被积函数sinx^2/x^p从0到正无穷积分的收敛域怎么求啊?

|sinx^2/x^p|≤1/x^p,找到1/x^p的收敛域应该就可以了吧,只是提供个思路,未必正确.

积分:1/(1+x^4) 从0到正无穷定积分 求较为细致的答案

∫dx/(1+x^4)=(1/2)[∫(1+x²)dx/(1+x^4)+∫(1-x²)dx/(1+x^4)].分子分母同除于x²=(1/2){∫[(1/x²)+

怎么求e的负X平方次方在负无穷到0的积分呢?

同学,你学过正态分布没有?知道那个是怎么来的不?其实你用换元积分就可以求出来了再问:用换元积分怎么求的呢?谢谢你了!!!

概率论负无穷到正无穷积分为什么等于0到正无穷积分

你看题目,是不是 x<0时,f(x)=0 所以在负无穷到0积分值为0 就直接从0到正无穷积分

求定积分∫ye^(-y)dy,其中积分区域是0到正无穷

∫ye^(-y)dy=-∫ye^(-y)d(-y)=-∫yde^(-y)=-ye^(-y)+∫e^(-y)dy=-ye^(-y)-∫e^(-y)d(-y)=-ye^(-y)-e^(-y)=-(y+1)

exp(-ix^2)到正负无穷的积分怎么求?

用Matlab求解,得>>int('exp(-i*x^2)','x',-inf,inf)ans=2^(1/2)*pi^(1/2)*(1/2-i/2)>>simple(ans)%化简(2*pi)^(1/

x-sinx/x+sinxx趋近无穷,求极限(用洛必达法则求解)

本题不可以使用洛必达法则lim[x→∞](x-sinx)/(x+sinx)=lim[x→∞](1-sinx/x)/(1+sinx/x)=1洛必达法则并非万能的.【数学之美】团队为您解答,若有不懂请追问