如何用1 n的级数发散来说明1 n 2的级数发散

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:33:45
关于级数敛散性的证明 证明级数 ((-1)^n )/((根号n)+(-1)^n)是发散的

首先,由Leibniz判别法,可知级数∑(-1)^n/√n收敛.两级数相减得∑(-1)^n·(1/√n-1/(√n+(-1)^n))=∑1/(√n(√n+(-1)^n)).这是一个正项级数,通项与1/

判断此级数的敛散性:(n1-无穷)(-1)的n次方*根号下(n-根号n)-根号n 答案是发散.具体如何判断!

(-1)的n次方*根号下(n-根号n)-根号n当n是偶数时式子等于根号下(n-根号n)-根号n=[n-根号n-n]/[根号下(n-根号n)+根号n]=-根号n/[根号下(n-根号n)+根号n]-1/2

根据级数收敛与发散的定义判别∑1/(3n-1)(3n+1)敛散性,具体过程

既然是用定义,那就计算出部分和数列来.an=0.5(1/(3n-1)-1/(3n+1)),因此sn=0.5(1/2-1/5+1/5-1/8+1/8-1/11+...+1/(3n-1)-1/(3n+1)

证明级数(1/2^n+1/n)发散

1/2^n公比为1/2的几何级数收敛1/n调和级数发散收敛级数与发散级数的和发散.1/2^n与1/n的前n项部分和分别为sntn,则sn收敛,tn发散设wn=sn+tn,如果wn收敛,则tn=wn-s

证明级数∞∑n=1 e^ (-1/n^ 2)发散

因为对于e^(-1/n^2),当n→∞时,-1/n^2从-1趋向于0(左边趋近)而e^x对于x∈(-1,0),其值是从1/e逐渐趋向于1,相当于数列的a(n)项的极限趋向于1,根据数列和的收敛定义,正

若级数∑[n=1,∞]Vn收敛,则级数∑[n=1,∞]1/Vn发散 依据的原理是什么?

如级数vn收敛,则vn->0,而1/vn->无穷,所以,级数1/vn不可能收敛

证明:从1开始,级数(n^(1/n)-1)发散

你只要比较[n^(1/n)-1]与1/n的大小即可.显然当n足够大时n>(1+1/n)^n,这是因为后一项趋向于e.从而n^(1/n)>1+1/n.

1/(n^2+2)是不是收敛级数,那1/(2n+1)又是不是发散的呢?请高手再举些收敛或发散级数的例子!

用比较判别法很容易知道1/(n^2+2)收敛,1/(2n+1)发散事实上n趋于∞时1/(n^2+2)等价于1/n^2,1/(2n+1)等价于1/2n,而1/n^2收敛,1/2n发散.故1/(n^2+2

级数1/n+1是收敛的还是发散的?

如果仅仅是1/(n+1)的话,那它是收敛的.因为当n趋于无穷大时,n+1也是趋于无穷大.那么它的倒数,也就是1/(n+1)就趋于0.

级数1/(n+1)收敛还是发散?为什么?

发散,因为它和1/n等价,lim(1/n)/[1/(n+1)]=1(n趋近于∞时)所以他俩的敛散性一致又因为1/n发散,所以1/(n+1)也发散再问:�ȼۣ�������Ϊ���ǵ�n����һ���

为什么级数1/n发散,而1/n²却收敛?1/2n发散还是收敛?

先回答标题中的问题,发散∑1/n^p我们称为p级数,当且仅当p>1的时候收敛,证法许许多多至于你说的这个判别方法,要记住一点不论是达朗贝尔,还是柯西法,都是说1时发散,=1的时候这俩法则都不起作用,因

很简单的级数问题,级数(那个符号)1/5n是收敛还是发散

发散,因为形如1/1+1/2+1/3+…+1/n+…的级数称为调和级数,它是p=1的p级数.调和级数是发散级数.在n趋于无穷时其部分和没有极限(或部分和为无穷大).

求级数收敛还是发散∑(-1)^nln(n/(2n+1))

显然发散,级数收敛,其每项都最终收敛到0,而这个级数的每项最终都不收敛到零,级数自己怎么可能收敛再问:ln(n/(2n+1))虽然本身自己发散但是在远原技术中他的一项减去第二项再加第三项,这样你就能保

级数ln(1+1/n)如何判断其是发散.

两个方法.(1)按定义,将一般式写成ln(n+1)-ln(n),求得部分和数列Sn=ln(n+1),极限为无穷大,原级数发散.(2)用比较审敛法的极限形式,因为级数的一般项ln(1+1/n)与1/n是

高数,无穷级数敛散性1/n㏑n 收敛还是发散的,为什么?

积分判别法积分dx/(xlnx)换元,t=lnx,dt=dx/x=积分dt/t=lnt|=ln无穷-lnln2发散再问:真厉害!再请教一下,级数中lnx放在任何一个级数内是不是不影响敛散性?再答:不一

级数证明调和级数1/n发散如何证明1/2n和1/(2n-1)也发散?

“数学之美”团员448755083为你解答!调和级数A=∑(1/n)=1+(1/2)+(1/3)+(1/4)+(1/5)+(1/6)+(1/7)+(1/8)+(1/9)+(1/10)+.显然1/3>1

如何用级数的方法证明1/n^n是比1/n!高阶的无穷小量?

用1/n^n除以1/n!得n!/n^n=1/n*2/n*……n/n

级数n的阶乘乘e的n次方除以n的n次方 为什么发散?

比值判别法,后项与前项的比值=e/(1+1/n)^n>1,因此发散.再问:比值等于1啊再答:是比值,不是极限。对任意正整数n,(1+1/n)^n

判断级数∑(n=1)(-1)^n/(n+根号n)是绝对收敛,条件收敛还是发散

{an}是莱布尼茨交错级数,故收敛1/(n+根号n)>1/(n+n)=1/2n,因为{1/2n}发散,所以{│an│}也发散因此,{an}条件收敛