如何证明E-2αα转置为对称正交阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 15:18:34
实对称矩阵A为正定矩阵的充分必要条件是A的所以特征值全是正的.(A-E)(A-2E)(A-3E)=O所以A的特征值满足方程(λ-1)(λ-2)(λ-3)=0,解得λ=1,2,3.即A的所以特征值全是正
正交矩阵定义:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”.)或A′A=E,则n阶实矩阵A称为正交矩阵对称矩阵A'=A所以A方=E,命题成立
直接验证.a是单位列向量,所以aTa=1AT=ET-2(aaT)T=E-2aaT所以是对称阵.ATA=(E-2aaT)(E-2aaT)=E-2aaT-2aaT+4aaTaaT=E这说明A是正交阵.
设曲线上任意一点为A,找到其关于直线y=x的对称点B,证明B在曲线上则可知曲线关于y=x对称
可设n不是正的自然数然后用反证法证明2^k*m=n不成立当n=0时2^k*m=0得m=0与题不合当n
令x=x+2,代入f(x+2)=1/f(x),得:f(x+4)=1/f(x+2),因为f(x+2)=1/f(x),所以1/f(x+2)=f(x),所以f(x+4)=1/f(x+2)=f(x),所以最小
A为实对称矩阵,则A~ΛΛ=P^(-1)AP,A=PΛP^(-1)B=A^2-2A-E=PΛ^2P^(-1)-2PΛP^(-1)-PEP^(-1)=P(Λ^2-2Λ-E)P^(-1)P^(-1)BP=
再答:前面点错了,呵呵,敬请谅解再答:再问:再问:这样成立?再答:是的,你利用转置的性质算一算,意外着A是对称矩阵再问:这步还是有点不懂,初学线代,忘老师再说的浅显一点再问:我懂了!谢谢老师再问:又做
只能证明(1+1/n)^n:1、是递增的;2、是有界的.然后命名它为e,不是证明出来的,而是定义出来的:lim(1+1/n)^n=en→∞
A为三阶方阵,所以最多只有三个特征值.2E-A,3E-A都不可逆,所以|2E-A|=0=|3E-A|,即A有两个特征值为2,3,另外|A|为三个特征值乘积,所以假设还有一个特征值为x,那么6x=|A|
定义二元函数f(x)=x^{T}Mx,则易知它是连续的1)存在正交阵A,使得A^{T}MA=diag{λ0,λ1},对所有的二维向量x,由A的可逆性,存在二维向量y,满足Ay=x,则f(x)=f(Ay
设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-
因为A^2+4A+4E=0所以(A+2E)^2=0所以A的特征值只能是-2.又由于A是实对称矩阵(可对角化)所以存在可逆矩阵P满足P^-1AP=diag(-2,-2,...,-2)=-2E所以A=P(
甲烷的一氯代物无同分异构体,就说明甲烷空间结构为正四面体.
证明:(1)对任意非零n维列向量x,x^Tx>0且(Ax)^T(Ax)>=0所以x^T(A^TA+E)x=(Ax)^T(Ax)+x^Tx>0所以A^TA+E正定.(2)设λ是A的特征值,则λ为实数且λ
A为对称矩阵,则A'=A,A'是A的转置矩阵.所以B=B'有[B'×(AB)]'=(AB)'×B=B'×A'×B=B'×(A'B)=B'×(AB)证毕
你可以翻阅大学的高等数学课本,通常是第一册呢.证明用到了有界单调数列,必有极限
由已知,A^T=A1.(A^2+E)^T=A^2+E2.对任一n维向量x≠0,x^Tx>0,(Ax)T(Ax)>=0所以x^T(A^2+E)x=(x^TA)(Ax)+x^Tx=(Ax)^T(Ax)+x