如何证明组合C(r-1)(n) C(r)(n)=C(r)(n 1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 16:51:57
定义就可以了C(m,n)=n!/[(n-m)!*m!]=n!/{[n-(n-m)]!*(n-m)!}=C(n-m,n)
1.traffic2.actress3.engineer4.maste
=(1+1)^n=2^n二项式定理.
你的思路是对的,同解的证明如图.经济数学团队帮你解答.请及时评价.
1、为书写方便,以下记矩阵G=(A/B),A上B下(1)方程组Gx=0的解都是(CD+AB)x=0的解,二r(CD+AB)=n,所以(CD+AB)x=0只有零解,所以Gx=0只有零解,所以r(G)=r
1.C(r,r)+C(r+1,r)+C(r+2,r)+…+C(n,r)=C(r+1,r+1)+C(r+1,r)+C(r+2,r)+.+C(n,r)=C(r+2,r+1)+C(r+2,r)+...+C(
这是二项式定理,高中内容,用小学知识证明?
C(k,k)=C(k+1,k+1)C(n-1,k)+C(n-2,k)+…C(k+2,k+1)+C(k+1,k)+C(k+1,k+1)=C(n-1,k)+C(n-2,k)+…C(k+2,k+1)+C(k
C(n,k)+C(n,k-1)=n!/[k!*(n-k)!]+n!/[(k-1)!*(n+1-k)!]=n!*[(n+1-k)+k]/[k!*(n+1-k)!]=(n+1)!/[k!*(n+1-k)!
二项式定理(1+x)^n=C0,n+C1,n*x+C2,n*x^2+...+Cn,n*x^n令x=1则C(0,n)+C(1,n)+C(2,n)+...+C(n,n)=2^n----------1式令x
(1)C(n,k-1)+C(n,k)=n!/((k-1)!*(n-k+1)!)+n!/(k!*(n-k)!)=n!*k/(k!*(n-k+1)!)+n!*(n-k+1)/(k!*(n-k+1)!)=n
N=9,R=6
instructions指导,说明,说明书
第一个,利用(1+x)^n=Σ(i=0,n)C(n,i)*x^i,两边对x求导,得:n*(1+x)^(n-1)=Σ(i=1,n)i*C(n,i)*x^(i-1).两边同乘以x,得:n*x*(1+x)^
再问:不要用二项式定理,因为刚开始学组合还没有学到二项式,
可以根据C(r+1,n)+C(r,n)=C(r+1,n+1)证明.C(r+1,n)+C(r,n)+C(r,n)+C(r-1,n)=C(r+1,n+1)+C(r,n+1)=C(r+1,n+2)
1.C(r,r)+C(r+1,r)+C(r+2,r)+…+C(n,r)=C(r+1,r+1)+C(r+1,r)+C(r+2,r)+.+C(n,r)=C(r+2,r+1)+C(r+2,r)+...+C(
证由二项式定理得(1+x)^n=∑C(k,n)*x^k所以(1+x)^(2n)=[C(0,n)+C(1,n)*x+...+C(n,n)*x^n]*[C(0,n)+C(1,n)*x+...+C(n,n)
LZ,你的等式右边不对,n=1的时候这两边就不等.右边应该是A(m+n+1,n)/(m+1)[或者m!*C(m+n+1,n)]至于证明,将右边改过来之后,两边同除以m!,转化为证明:C(m,m)+C(