如图 AB是圆O的直径 弧AC=弧BC D是半圆上一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:19:26
先吐槽一下==图好难看做法是连接AC和OC证明:因为角ACB所对的线段AB为圆的直径所以角ACB为90°因为弧AD=弧CD所以角AOD=角COD同时易知AC与OD垂直易知角ACO+角COD=90°角A
证明:连接AD∵AB是圆O的直径∴∠ADB=90°=∠ADE∵D是弧BC的中点∴弧BD=弧CD∴∠CAD=∠BAD∵AD=AD∴△AED≌△ABD∴AE=AB再问:d点是be的中点吗、辅助线是怎么做的
连接OD交BC于F.连接OC(1)在⊿BOF和⊿COF中因弧BD=弧CD,则∠BOD=∠COD(等弧对等角),即∠BOF=∠COF又OB=OC(半径相等)且OF=OF所以⊿BOF≌⊿COF,得BF=C
证明:连接OC∵AC‖OD∴∠A=∠BOD,∠C=∠COD∵OA=OC∴∠A=∠C∴∠COD=∠BOD∴弧CD=弧BD
连接OD因为∠AOC=∠EOB,所以弧AC=弧EB因为AB//CD,所以∠EOB=∠ECD因为∠ECD=1/2∠EOD,所以∠EOB=∠BOD,所以弧EB=弧DB所以弧EB=弧AC=弧BD
(1)∠AOC=π/3×R/R=π/3(2)∵∠AOC=π/3,OA=OC,∴△AOC是等边三角形,∠CAO=π/3由△AEC≌△DEO,得∠CAE=∠ODE∴AC//OD,∴∠DOB=∠CAO=π/
)∵AC^=π/3R,半圆的长是πR,∴弧AC是半圆是1/3,即弧的度数是60°,∴∠AOC=60°;
如果知道关于15°角的三角比值的话,就很方便了~AB=8∠ADB=90°AD=BE=ABxsin15=8x(√6/4-√2/4)BD=ABxcos15=8x((√6/4+√2/4)DE=BD-AD=4
(1)连接OE、OF,∠AOE=∠EOF=∠FOC,(同弧所对的圆心角相等)在△OED中,∠EOD=60°,∠EDO=90°,∵∠OED=30°.在直角直角形中,30°所对的直角边=斜边的一半.∵OD
解题思路:(1)本小题主要运用垂径定理,圆周定理,中位线定理即可解答。(2)作GC'⊥AB于C',设AF=x,在Rt△AGC'中利用勾股定理,构建方程即可求解。解题过程:
证明:连接OC∵AC‖OD∴∠A=∠BOD,∠C=∠COD∵OA=OC∴∠A=∠C∴∠COD=∠BOD∴弧CD=弧BD(2)连接OC∵弧CD=弧BD∴∠COD=∠BOD∵OA=OC∴∠A=∠C∵∠CO
解∵AC为直径,∴AB⊥BC,∵EF⊥BC,∴AB∥EF,∵弧AD=弧BD,∴AB⊥OD,(过圆心平分弧的直线垂直平分弦),∴OD⊥EF,∴EF为圆O的切线.
因为AB是直径所以弧ACB=弧ADB因为弧AC=弧AD所以弧BC=弧BD所以角CAB=角DAB所以AB平分角CAD2、因为AB平分角CAD所以角CAB=角DAB所以弧BC=弧BD因为AB是直径所以弧A
平行设od垂直平分bc于eoa=obeb=ec所以平行
连接OC,OD三角形OPC中,PC=PO则∠C=∠POC又OC=OD所以∠C=∠PDOBD弧所对的圆心角BOC=∠PDO+∠OPD=∠PDO+∠C+∠POC=3∠CAC弧所对的圆心角为∠C所以弧AC=
连接OC,OD,AD,OD交AC于E∵D是AC弧的中点∴AD=CD【等弧对等弦】又:OA=OC=OD=AB/2=10/2=5【半径是直径的一半】∴OD是AC的垂直平分线∴CE=AE=1/2AC=4OE
∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD
AC∥OD则∠ACO=∠COD=70°因为CO=AO则角CAO=角OCA=70则弧AC的角度为40°角DOB=180-角COD-角AOC=70OB=OD则角ODB=角OBD=55则弧BD的度数为55°
证:连接OC∵AC‖DE∴∠BOE=∠OAC,∠OCA=∠COE∵OA=OC∴∠OAC=∠OCA∴∠BOE=∠COE∴弧BE=弧CE