如图 ef是圆o的直径,MN是弦,且EF=10

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 13:51:56
如图,AB是圆心O的直径,且AB=10,弦MN的长为8,若弦MN的两端在圆上滑动时,始终与AB相交,记点A、B到MN的距

作OG⊥MN与G,OG=√(OM^2-MG^2)=3,△OGH∽△AFH,则h1/OG= HA/ OH,△OGH∽△BEH,则h2/OG= HB /OH,所以h

如图,MN是半圆O的直径,A,B,C是半圆

270°,连接OA,OB,OC,形成四个等腰三角形AOM,AOB,BOC,CON,角OAM=(180-角AOM)/2,角OAB=(180-角AOB)/2,角BCO=(180-角BOC)/2,角OCN=

如图,AB,CD是半径为5的圆O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN,CD⊥MN,P为EF上任意一点

连结BC,BC与EF的交点为P时,PA+PC最短连结OA,OC,由勾股定理得OE=3,OF=4∴EF=7∵AB‖CD∴BE/CF=EP/PF4/3=EP/PFEP+PF=7∴EP=4,PF=3∴BP=

已知:如图,AD是圆O直径,EF是弦,AB⊥EF,DC⊥EF,垂足分别是B、C.求证:BE=FC

你可以过O作EF的垂线,垂足为H.则可知道H是EF的中点.然后可以得到AB//OH//CD.O为AD的中点,则H为BC的中点.由BH=CH,EH=FH得,BE=FC有个定理,叫做圆中弦还是什么来着,就

如图,AB是圆O的直径,且AB=10,弦MN的长为8,若弦MN的两端点在圆上滑动时,始终与AB相交,记点A,B到MN的

h1+h2=圆心O到MN的距离的2倍,利用垂径定理,得到这个距离是3,则h1+h2=6再问:“h1+h2=圆心O到MN的距离的2倍”这是为什么?再答:可以将弦MN平移到其一个顶点与点A(或者B)重合。

如图,AB是圆O的直径,EF是弦,CE⊥EF,DF⊥EF,E、F为垂足.求证:AC=BD

已知如图AB是圆O的直径,点P为BA延长线上一点,PC为圆O的切线,C为切点,(8)求证BC^8=BD*BA(8)若AC=8DE=8求PC的长第一问:8)

如图,AB是圆O的直径,EF是弦,CE垂直EF,DF垂直EF,E,F为垂足.求证AC=BD

过O点作OM⊥EF,垂足为M.则有ME=MF即点M是EF的中点.∵CE⊥EFDF⊥EFOM⊥EF∴DF‖OM‖CE又点M是EF的中点∴OM是梯形CDEF的中位线则OC=OD∵AB是⊙O的直径∴OA=O

已知EF是圆O的直径,EF=10CM,弦MN=8CM,求E、F两点到直线MN的距离之和

所求即为求圆心到MN的距离的两倍~(中位线)然后过O作MN的垂线,垂足为P连接OM~根据勾股定理即得OM^2=OP^2+PM^2求出OP,再乘2就可以了~

(2013•黄浦区二模)如图,MN是⊙O的直径,点A是弧MN的中点,⊙O的弦AB交直径MN于点C,且∠ACO=2∠CAO

(1)∵MN是⊙O的直径,点A是弧MN的中点,∴∠AOM=14×360°=90°,∴∠ACO+∠CAO=90°,∵∠ACO=2∠CAO,∴3∠CAO=90°,解得∠CAO=30°;(2)过点O作OD⊥

已知如图,MN是圆O的弦,AB是圆O的直径,AB垂直于MN,垂足为点P,半径OC,OD分别交MN于点E,F,且OE等于O

∵0E=0F,∴△OEF是等腰△又AB⊥MN∴OP垂直平分底边EF,∴PF=PE∵MN是弦,AB是直径,且AB⊥MN∴AB垂直平分MN,即:pM=pNPm一pE=PN一PFME=FN再答:垂直于弦的直

如图,AB,CD是半径为5的圆O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN,CD⊥MN,P为EF上任意一点,

7倍根号2再问:谢谢,可否讲解一下呢?再答:连接OA,OC.作CG垂直于AB,用勾股定理算得EF=OE=OF=7,CG=7,在直角三角形CGB中BC=7倍根号2再答:对了!CE=CF=3!!!再答:懂

如图,MN是圆O的直径,弦AB ,CD相交于MN上的一点P,∠APM=∠CPM

AB=CD,理由是:过O作OE⊥AB于E,OF⊥CD于F,连接OB、OD,∵∠APM=∠CPM,∠APM=∠BPN,∠CPM=∠DPN,∴∠BPN=∠DPN,∵OE⊥AB,OF⊥CD,∴OE=OF,在

MN是圆O的直径,AB,CD是弦,MN垂直AB,CD//AB.求证:MN平分CD

连接AO,BO,CO,DO.等腰三角形ABO,由等腰三角形三线合一知MN过圆心O.又MN垂直AB,AB平行CD所以MN垂直CD.等腰三角形CDO,由等腰三角形三线合一知MN就是CD的垂直平分线.

如图,AB是⊙O的直径,且AB=10,弦MN的长为8,若弦MN的两端在圆上滑动时,始终与AB相交,记点A、B到MN的距离

设AB、NM交于H,作OD⊥MN于D,连接OM.∵AB是⊙O的直径,且AB=10,弦MN的长为8,∴DN=DM=4,∵MO=5,∴OD=3.∵BE⊥MN,AF⊥MN,OD⊥MN,∴BE∥OD∥AF,∴

如图,MN是半圆O的直径,K是MN延长线上一点,直线

35度连接PN,设角NPQ=X,角NMQ=X(同弧所对圆周角)角K+X+90+40+X=180(90是因为直径对的圆周角,180是三角形KPM的内角和)求得X=15,所以角PMN=55,余角PNM=3