如图 在四棱锥p abcd中 pa垂直底面abcd,AB=4,BC=3,AD=5
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 16:49:41
(本小题14分)(I)证明:∵AB=1,BC=2,∠ABC=45°,∴AB⊥AC…(2分)∵PA⊥平面ABCD,∴PA⊥AB,又∵AC∩AP=A∴AB⊥平面PAC,又∵AB∥CD∴CD⊥平面PAC,∴
正在做,等做完了再发送再问:好的,谢谢再答:有个条件是AC⊥CD吗?再问:嗯,是的再答:(1)取PC中点K点,连接MK,QKMK//CD,CD//AB所以,MK//ABKQ//PBKM∩KQ=K所以面
解析:根据题意我们可以知道PA⊥PD;而平面PAD⊥平面ABCDPA=PD所以点P在平面ABCD上的射影是AD的中点又因为AD⊥CD所以PA⊥DC既PA⊥面PCD如果取PD中点为F则四边形AMNF为平
你可以画个草图分析1,连接BD交AC、于F点,再连接EF在三角形PBD中EF卫中位线所以EF平行于PD所以PD平行平面AEC2连接PF因为PA=PC所以三角形PAC为等腰三角形所以PF垂直于ACAC垂
连接BD,OM.在平行四边形ABCD中,O是BD的中点,又因为M是PD的中点,所以,在三角形PBD中,MO//PB,又因为MO在平面ACM内,BP不在平面ACM内,所以PB//平面ACM(因为大部分符
(1)连接BD交AC于O点,连接EO,因为O为BD中点,E为PD中点,所以EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(2)因为PA⊥平面ABCD,CD⊂平面
(2)拟用面积投影定理.求得:PD=AC=根号(20)=2根号5.AE=根号5,角PDC=90度.求得CE=根号(5+4)=3.在三角形AEC中,用余弦定理,得cos角EAC=[5+20-9]/[2*
10问10知道,\x0d\x0d解法1:\x0d\x0d解法2:\x0d\x0d\x0d打字太累了,发到这里又不能准确显示,只好做成图片,发到这里.忙了大半个小时,建议适当加些分,
PA垂直平面ABCD,所以,PA垂直AB,PA垂直AD,PA垂直AC,PA垂直CD,四边形ABCD是平行四边形,PA=AB=CD=2,AB//CD,AB垂直AD,所以CD垂直AC,所以,CD垂直平面P
∵PA⊥平面AC,∴PA⊥AD,PA⊥AB∴△PAD,△PAB为直角三角形又∵四边形ABCD是矩形,∴AB⊥BC,结合PA⊥BC,PA∩AB=A∴BC⊥平面PAB又∵PB⊂平面PAB∴BC⊥PB∴△P
1、设AC和BD交于O,∵PA⊥平面ABCD,BD∈平面ABCD,∴PA⊥BD,∵四边形ABCD是菱形,∴BD⊥AC,(菱形对角线互相垂直平分),∵AO∩PA=A,∴BD⊥平面PAC,2、PA=AB,
你没有给原图,我也不知道那些图中的长度,所以我就用字母代替了,由于字母代替计算很麻烦我就也就给你求出两个平面的法向量了,最后你用向量的内积公式求以下就可以了,不管面的长度是字母还是数字里面的过程就是这
证明:(I)∵PA⊥平面ABCD,∴PA⊥BD.又BD⊥AC,AC∩PA=A,∴BD⊥平面PAC.∵BD⊂平面PBD,∴平面PBD⊥平面PAC.(II)∵AC⊥BE,AC⊥BD,BE∩BD=B,∴AC
(1)因PA垂直底面ABCD,所以PA垂直BD又因底面ABCD为正方形,所以BD垂直ACPA、AC是在平面PAC内因此BD垂直平面PAC(2)45度PA垂直底面ABCD角PAD为90度又因PA=AB,
(1)做辅助线,过A点做AE∥CD交BC于E点∵BC∥于AD,AE∥CD,AD⊥DC∴四边形ADCE是矩形∴AE⊥BC,AD=CE,AE=CD∵BC=2AD∴BE=CE=AD∵AD=CD∴BE=AE∴
(1)∵PA⊥平面ABCD,∴PA⊥CD,又AD⊥CD∴CD⊥平面PAD,∴平面PDC⊥平面PAD(2)取CD的中点F,连接EF,连接AF,△DPC内,RT△PAC内,PC=√AP²+AC&
ABCD面积为1PAB面积为0.5PAD面积为0.5PB=√2AC=√2PC=√3PBC是直角三角形同理PCD也是直角三角形面积为0.5√2四棱锥表面积为2+√2
ABCD是矩形,AD=AB &nb
(1)取PA的中点E,连结EM、BE,∵M是PD的中点,∴ME∥AD且ME=12AD,又∵Q是BC中点,∴BQ=12BC,∵四边形ABCD是平行四边形,∴BC∥AD且BC=AD,可得BQ∥ME且BQ=