如图 已知ac是圆o的直径PA⊥AC2016合肥

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 10:56:28
如图,已知直线PA交圆O于A、B两点,AE是圆O的直径,点C为圆O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D

设DA=X,DC=6-DA=6-X,连接EC,AE是直径,所以∠ACE=90°=∠CDA,∠CAE=∠CAD,所以⊿ACE∽⊿ADC,[AA]AE:AC=AC:ADAC²=AE*ADAD&#

如图:已知ac是圆o的直径pa垂直ac,连结op,弦cb平行op,直线pb交直线ac于d,bd=2pa证明pb是圆o的切

∵cb//op∴∠aop=∠acb∵ob=oc(bc是弦)∴∠acb=∠obc∵cb//op所以∠obc=bop∴∠aop=∠acb=∠obc=∠bop又有ob=oa,op=op∴△aop≌△bop∴

如图,已知AC是圆O的直径,PA⊥AC.连接OP,弦CB∥OP.直线PB交直线AC于D,BD=2PA.

(1)连接OB.∵BC∥OP,∴∠BCO=∠POA,∠CBO=∠POB∵BC是圆O的弦∴∠BCO=∠CBO∴∠POA=∠POB又∵PO=PO,OB=OA,∴△POB≌△POA.∴∠PBO=∠PAO=9

如图,已知AC是圆O的直径,PA切圆O于点A,B是圆O上一点,PB=PA

(1)连接OB、OP△POA和△POB中PA=PB,PO=PO,AO=BO(都是半径)所以△POA≌△POB,∠PAO=∠PBO因为PA为切线,所以∠PAO=90因此,∠POB=90.PB为圆切线(2

如图,已知直线PA交圆O于A,B两点,AE是圆O的直径,点C为圆O上一点,且AC平分角PAE,过C作CD⊥PA,垂足D

过O作OM⊥AB于M.即∠OMA=90°,∵AB=8,∴由垂径定理得:AM=4,∵∠MDC=∠OMA=∠DCO=90°,∴四边形DMOC是矩形,∴OC=DM,OM=CD.∵AD:DC=1:3,∴设AD

如图,已知直线PB交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过点C作CD⊥PA,垂足为

连接OC,过点O作OF⊥AC于F∵CD⊥PA,OF⊥AC∴∠ADC=∠AFO=90∵AC平分∠PAE∴∠PAC=∠OAC∴△ACD∽△AOF∴AF/OF=AD/CD∵CD=2AD∴AD/CD=1/2∴

如图,已知直线PA交圆O于A,B两点,AE是圆O的直径,C为圆O上一点,且AC平分角PAE 若AD:DC=1:3 求圆O

半径等于3AC/2连接CE,根据圆的性质AC垂直于CE因为角DAC=角CAE所以三角形ADC与三角形ACE相似所以AC/AE=AD/DC所以AE=3AC所以半径=3AC/2

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径.点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为

1连接OC因为OA=OC所以∠OAC=∠OCA因为∠OAC=∠PAC所以∠OCA=∠PAC所以OC//PA因为CD⊥PA所以OC⊥CD所以CD是⊙O的切线2连接CE因为CD⊥PA,AD:CD=1:3所

如图,已知直线 交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA ,垂足为D

出现DC+DA=6一般首先考虑从几何上构造.但是这个题有更简单的方法.题目给出AE=10,而三角形ACD和AEC相似,设AD=x,DC=y,可以根据相似关系列出xy的一个关系式.结合x+y=6可以列两

圆的切线证明题.如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过AC的中点M,求证:PC是⊙O的切线.

证:因为:M是AC的中点所以:AM=CM,且OM=OM所以:△OAM≌△OCM(边、边、边)由此得:∠AOP=∠COP(全等三角形对应角相等)连接OC,则OC=OA,且OP=OP所以:△AOP≌△CO

如图,已知,AC是圆O的直径,PA⊥AC,连接OP,弦CB平行OP,直线PB交直线AC于点D,BD=2PA

∵BC‖OP,∴∠BCO=∠POA,∠CBO=∠POB.又∵PO=PO,OB=OA,∴△POB≌△POA.∴∠PBO=∠PAO=90°.∴PB是⊙O的切线

如图,已知AC是圆O的直径,PA⊥AC,连结OP,弦CB平行OP,直线PB交直线AC于D,BD=2PA

连接op,ab.交于点e.∵op‖bc,ab⊥bc,∠aop=∠acb∴∠bao=∠OPA,∠AEO=∠ABC即OP⊥AB,∵AO=OB=R∴OP垂直平分AB∴∠APD=2∠OPA设AP=X,BD=2

如图,已知PA垂直圆O所在的平面,AB是圆O的直径,AB=2,C是圆O上的一点,且AC=BC,PC与圆O所在的平面成45

①求证:EF//面ABC证明:∵E是PC的中点,F数PB的中点∴EF是△PBC的中位线∴EF//BC∵BC∈面ABC∴EF//面ABC②求证:EF⊥面PAC∵AB是⊙O的直径∴∠ACB=90°即AC⊥

已知如图,AB是圆O的直径,C是圆上一点,BC=3,AC=4,PA⊥平面ABC,求点A到平面PBC的距离

AB是平面PBC的距离∵△ABC是直角三角形;BC=3;AC=4;∴AB=√AC2+BC2=5

如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过AC的中点M,求证:PC是⊙O的切线.

证明:连接OC,∵PA⊥AB,∴∠PA0=90°.(1分)∵PO过AC的中点M,OA=OC,∴PO平分∠AOC.∴∠AOP=∠COP.(3分)∴在△PAO与△PCO中有OA=OC,∠AOP=∠COP,

如图,AC是圆O的直径,PA,PB是圆O的切线,切点分别为A,B.OP与CB有怎样的位置关系

OP∥BC.证明:连接OB,AB.∵PA,PB均为圆O的切线.∴∠PAO=∠PBO=90°.(切线的性质)又∵OA=OB,OP=OP.∴⊿PAO≌⊿PBO(HL),∠2=∠3.∵OA=OB,∠2=∠3

如图,已知P是圆o外的一点,PA切圆o于A,PB切圆o于B,BC是圆o的直径,求证:AC∥OP

∵PA切圆o于A,PB切圆o于B连接PO则OP平分∠AOB即∠AOB=2∠POB∵弧AB所对圆心角为∠AOB,所对圆周角为∠ACB(同弧所对圆心角是圆周角的二倍)∴∠AOB=2∠ACB∴∠POB=∠A

如图,已知:AC是⊙O的直径,PA⊥AC,连接OP,弦CB∥OP,直线PB交直线AC于D,BD=2PA.

连接BO因为CB∥OP,所以角BCO=角POA,角CBO=角BOP又因为角BCO=角CBO,所以角POA=角BOP又因为BO=OA,OP=PO,所以三角形BOP≌三角形AOP,所以PB=PA设PB=P

如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过AC的中点M.

证明:(1)∵AB是直径,∴O是AB中点;又∵M为AC中点,∴OM是三角形ABC中位线,∴MO=12BC;(2)证明:连接OC,∵PA⊥AB,∴∠PA0=90°.(1分)∵PO过AC的中点M,OA=O

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,C为⊙O上一点,且AC平分∠PAE,过点C作CD⊥PA于D.

(1)证明:连接OC.∵OC=OA,∴∠OAC=∠OCA.∵AC平分∠PAE,∴∠DAC=∠OAC,∴∠DAC=∠OCA,∴AD∥OC.∵CD⊥PA,∴∠ADC=∠OCD=90°,即 CD⊥