如图 点p在圆o外,pa,pb分别与圆o相切于a,b两点,角p=50度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:15:59
P是三角形ABC外一点,O是P在平面上的射影,PA,PB,PC两两垂直,则O是ABC垂心,怎么证

PA⊥PB,PA⊥PC,且PB、PC交于P所以PA⊥平面PBC又因为BC在平面PBC内,所以PA⊥BC由于OA是PA在平面ABC内的射影,根据三垂线逆定理可得:BC⊥OA.同理,AB⊥OC,AC⊥OB

已知从圆O外一点P作圆O的切线PA,PB,分别切圆O于点A,B,在劣弧⌒AB上取任一点C,过点C作圆O的切线

证明:1、∵PA、PB切圆O于A、B∴PA=PB∵DE切圆O于C∴AD=CD,BE=CE∴DE=AD+BE∴△ADE的周长=PD+DE+PE=PD+AD+BE+PE=PA+PB=2PA∴△ADE的周长

如图,P为圆O外一点,直线OP交圆O于点B,C,过点P作圆O的切线PA,A为切点,已知PA/PB=3/2,求tan角PA

辅助线已作如图先证三角形ABP相似于三角形CAP:公共角P角ABP=角CAB+角ACB角CAP=角OAP+角CAO且三角形OAC等腰,从而角ACB=角CAO因为角CAB=角OAP=90°所以三角形AB

如图,P是圆O外一点,PA,PB分别与圆O相切于点A,B,点C是弧AB上一点,经过点C作圆O的切线,分别与PA,PB相交

 (1)在直角三角形AOD,COD中; 根据直角斜边(HL)证全等;      OC=OA, OD=OD;三角

如图所示,过半径为6cm的⊙O外一点P引圆的切线PA,PB,连接PO交⊙O于F,过F作⊙O的切线,交PA,PB分别于D,

如右图所示(1)连接AO,则OA⊥PA,PA=PO2−OA2=102−62=8,∵PA,PB为切线,A,B为切点,EF,EB,DF,DA均与⊙O相切,∴PA=PB,DA=DF,FE=BE,∴△PED的

P为圆O外一点,PA.PB切圆O于点A.B,PA=5,∠P=70°,C为弧AB上一点,过C作圆O的切线分别交PA.PB于

∠P=70°,所以∠AOB=110度,DA,DC,EB,EC分别是圆的切线,根据切线长定理,∠DOE=1/2∠AOB=55度DC=DA,EC=EB,所以周长为PD+PE+DE=PA+PB=2PA=10

平面ABC外一点P在平面ABC的射影为O,且PA,PB,PC两两垂直

可以连接AO,BO,CO因为PA垂直于PB,PA垂直于PC所以PA垂直于平面PBC所以PA垂直于BC因为PO垂直于平面ABC所以PO垂直于BCPO与PA交于P所以BC垂直于平面PAO所以BC垂直于AO

如图,点p为圆o外一点,自点p向圆o引切线pa,pb,切点为a,b,cd切圆o于点e,交pa,pb于点c,d,若pa等于

连接OA,OC,OE.∵A和E均为切点.∴∠OAC=∠OEC=90°;又OA=OE,OC=OC.∴Rt⊿OAC≌Rt⊿OEC(HL),AC=EC.同理可证:BD=ED,PA=PB.∴PC+CD+PD=

如图已知P是圆O外一点,PA切圆O于A,AB是圆O的直径,PB交圆O于C,PA=2cm,PB=4cm,求图中阴影部分的面

过C点.O点做辅助线CO,过O点做垂线,垂直PA交PA于D.由题意知,角PAB为直角.PB=2PA,所以角ABP等于30度.因圆心角是圆周角的2倍,所以角POA等于60度.在三角形PBA中,PB=4,

在三棱锥P—ABC中,PA=PB=PA,O为外心,求证:PO垂直于平面ABC

1.连接po因为o是外心所以ao=bo=co取AB边中点d连接odpd因为oa=ob所以oa垂直ab同理pd垂直ab所以ab垂直平面pdo所以po垂直于ab2同理po垂直bc因为abbc交于b点所以p

如图,已知P是圆O外一点,PA,PB分别切圆O于A,B,PA=PB=4,C是弧AB上任意一点,过C作圆O的切线分别交PA

∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8

(3)如图3.若点P在圆O外,过点P作PA,PB交圆O于点A,B,且PA=PB,则PO平分角APB吗?为什么?

平分.容易知道PA=PB,OA=OB,PO=PO则三角形PAO全等于三角形PBO.是故,角APO=角BPO.

半径为6cm的圆O外一点P引圆的切线PA、PB,连接PO交圆O于F,过F作圆O的切线交PA、PB分别于D、E,如果PO=

(1)连结OD、OA、OB,因为DF和DA都和圆O相切,所以DF=DA,设DF=DA=x,所以PD=8-x,因为DE是圆O的切线,所以OP垂直DE,所以PD的平方=DF的平方+PF的平方,即(8-X)

尺规作图:已知圆O外一点P,过P点作圆O的两条切线PA、PB

连接OP,尺规法找到OP中点M,以M为圆心,OP为直径作圆与圆O交于点A,点B连接PA,PBPA,PB即为所求切线

如图,角APB=60度,半径为a的圆O切PB于P,若圆O在PB上向右滚动且圆O雨PA相切时,圆心O移动的水平距离是多少?

∵AO'=CO',∠O'AP=∠O'CP=90°,O'P=O'P∴△O'PA≌△O'PC∴∠OPC=30°又∵O'CP=90°∴PC=√3a易得OO'=PC=根号3倍的a

已知P是半径为R的圆O外一点,PA切圆于A,PB切圆于B,角APB=60度,求夹在弧AB及PA,PB间的面积

连接OA,OB,OP,则所求面积S=2*三角形OAP面积-扇形OAB面积因为角APB=60°,则OPA=30°,角AOB=120°S=2*OA*AP*1/2-π*R^2*120/360=2*R*R*√

如图,以圆O外一点P引圆O的切线PA,PB,切点分别为A,B,Q为劣弧AB上一点,过Q做圆O的切线交PA,PB于E,F,

∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=

P为圆O外一点PA,PB为圆O切线,BC为直径.求证:CA‖OP

证明:连接AOPA和PB是圆切线,∠PAO=∠PBO=90°OA=OB,PO=PO△PAO≌△PBO∴∠POB=∠POA=1/2∠AOB∠ACB和∠AOB所对弧都是劣弧AB∴∠ACB=1/2∠AOB(