如图,AB⊥BC,垂足为点D,EF⊥BC,垂足为点F

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:44:11
已知如图,点D是△ABC的边AC上的一点,过点D作DE⊥AB,DF⊥BC,E、F为垂足,再过点D作DG//AB,且DE=

1.过G作AB的垂线,设交于H,则GH=DE=DF,∠GBH=∠FGD,∠BHG=∠DFG=90·所以ΔGHB≌ΔDFG,从而BG=DG2.连接BD和EF,设交于M,由BG=DG得∠DBF=∠BDG=

已知:如图,以等边三角形ABC一边AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F

证明:(1)连接DO.∵△ABC是等边三角形,∴∠A=∠C=60°.∵OA=OD,∴△OAD是等边三角形.∴∠ADO=60°,∵DF⊥BC,∴∠CDF=90°-∠C=30°,(2分)∴∠FDO=180

如图,等腰三角形ABC中,AC=BC=10,AB=12.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为

(1)证明:方法1:连接OD、CD.∵BC是直径,∴CD⊥AB.∵AC=BC.∴D是AB的中点.∵O为CB的中点,∴OD∥AC.∵DF⊥AC,∴OD⊥EF.∴EF是O的切线.方法2:∵AC=BC,∴∠

如图,在△ABC中,AB=AC,以AB为直径的○o与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为F.当AB

作DH⊥AB,垂足为H,则∠EDH+∠E=90°,又DE⊥OD,∴∠ODH+∠EDH=90°.∴∠E=∠ODH.∵AD=DC,AC=8,∴AD=4.在Rt△ADB中,BD=3,由三角形面积公式得:AB

已知,如图,BC是以线段AB为直径的⊙O的切线,AC交⊙O于点D,过点D作弦DE⊥AB,垂足为点F,连接BD、BE.

(1)BC⊥AB,AD⊥BD,DF=FE,BD=BE,△BDF≌△BEF,△BDF∽△BAD,∠BDF=∠BEF,∠A=∠E,DE∥BC等;(2)∵AB是⊙O的直径,∴∠ADB=90°,又∵∠A=30

如图,以等腰三角形ABC的腰AB为直径的○O交底边BC于点D,作DE⊥AC,垂足为D

证明:在圆O中,连接OD和AD AB为直径D为圆上一点(1)  ∴∠ADB=90° AD⊥BD     ∵AB

如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于点D,交AC于点E,过点D作DF⊥AC,垂足为F.

1、连接AD,OD∵AB是直径,∴∠ADB=90°,即AD⊥BC∵AB=AC,那么根据等腰三角形底边中线,高、和顶角平分线三线合一:∠BAD=∠CAD∵OA=OD,∴∠BAD=∠ODA=∠CAD∵DF

如图,在△ABC中,点E、G分别在BC、AC上,CD⊥AB,EF⊥AB,垂足分别为D、F.

(1)CD与EF平行.理由如下:∵CD⊥AB,EF⊥AB,∴CD∥EF(垂直于同一直线的两直线互相平行);(2)∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB

如图,DE平行BC,EF平分∠AED,EF⊥AB,CD⊥AB,垂足分别为点F、D,求证:CD平分∠ACB

1/2∠ACB=1/2∠AED=∠AEF=∠DEF∠DEF=∠EDC∠EDC=∠DCB平行线同位角相等EF平分∠AEDEF∥CDDE∥BC平行线内错角相等1/2∠ACB=∠DCB

(2012•海陵区二模)如图,以△ABC的边AB为直径的⊙O与边BC交于点D,过点D作DE⊥AC,垂足为E,延长AB、E

(1)证明:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵∠OAD=∠CAD(已知),∴∠ODA=∠CAD,∴OD∥AC.∵DE⊥AC,∴EF⊥OD,即∠ODE=90°,∵OD为半径,∴EF是⊙O的

如图,在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为F.

(1)证明:如图,连接OD,BD(1分)∵AB是⊙O的直径,∴∠ADB=∠90°,∴BD⊥AC;(2分)∵AB=BC,∴AD=DC;(3分)∵OA=OB,∴OD∥BC,(5分)∵DE⊥BC,∴DE⊥O

如图,已知等腰△ABC,AC=BC=10,AB=12,以BC为直径作⊙O交AB点D,交AC于点G,DF⊥AC,垂足为F,

(1)证明:连接CD,OD,∵BC是⊙O直径,∴∠CDB=90°,即CD⊥AB,∵AC=BC,∴BD=AD,∵BO=CO,∴OD∥AC,∵EF⊥AC,∴EF⊥OD,∵OD为半径,∴EF是⊙O的切线;(

(2014•宜宾)如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E

(1)证明:如图,连结OD.∵CD=DB,CO=OA,∴OD是△ABC的中位线,∴OD∥AB,AB=2OD,∵DE⊥AB,∴DE⊥OD,即OD⊥EF,∴直线EF是⊙O的切线;(2)∵OD∥AB,∴∠C

如图,在三角形ABC中,以AC为直径作圆O交BC于点D,交AB于点G,且D是BC中点,DE垂直AB,垂足为D,

(1)证明:连结OD、CD,∵BC是直径,∴CD⊥AB,∵AC=BC,∴D是AB的中点,又O为CB的中点,∴OD∥AC,∵DF⊥AC,∴OD⊥EF,∴EF是⊙O的切线再问:第2小题呢?

如图,等腰三角形ABC中,AC=BC=6,AB=8,以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,

200×20=4000(千克),4000千克=4吨,4吨>3吨,所以不够.答:3吨食物不够一头大象20天吃的.

如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于点D,过点D作DF垂直于BC,交AB的延长线于E,垂足为F.

(1)证明:如图,∵AB是⊙O的直径,∴∠ADB=∠90°,∴BD⊥AC;∵AB=BC,∴AD=DC;∵OA=OB,∴OD∥BC,∵DE⊥BC,∴DE⊥OD.∴直线DE是⊙O的切线.作DH⊥AB,垂足