已知:如图,以等边三角形ABC一边AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 11:47:05
已知:如图,以等边三角形ABC一边AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F
(1)求证:DF为⊙O的切线;
(2)若等边三角形ABC的边长为4,求DF的长;
(3)求图中阴影部分的面积.
(1)求证:DF为⊙O的切线;
(2)若等边三角形ABC的边长为4,求DF的长;
(3)求图中阴影部分的面积.
证明:(1)连接DO.
∵△ABC是等边三角形,
∴∠A=∠C=60°.
∵OA=OD,
∴△OAD是等边三角形.
∴∠ADO=60°,
∵DF⊥BC,
∴∠CDF=90°-∠C=30°,(2分)
∴∠FDO=180°-∠ADO-∠CDF=90°,
∴DF为⊙O的切线;(3分)
(2)∵△OAD是等边三角形,
∴AD=AO=
1
2AB=2.
∴CD=AC-AD=2.
Rt△CDF中,
∵∠CDF=30°,
∴CF=
1
2CD=1.
∴DF=
CD2−CF2=
3;(5分)
(3)连接OE,由(2)同理可知CE=2.
∴CF=1,
∴EF=1.
∴S直角梯形FDOE=
1
2(EF+OD)•DF=
3
3
2,
∴S扇形OED=
60π×22
360=
2π
3,
∴S阴影=S直角梯形FDOE-S扇形OED=
3
3
2-
2π
3.(7分)
∵△ABC是等边三角形,
∴∠A=∠C=60°.
∵OA=OD,
∴△OAD是等边三角形.
∴∠ADO=60°,
∵DF⊥BC,
∴∠CDF=90°-∠C=30°,(2分)
∴∠FDO=180°-∠ADO-∠CDF=90°,
∴DF为⊙O的切线;(3分)
(2)∵△OAD是等边三角形,
∴AD=AO=
1
2AB=2.
∴CD=AC-AD=2.
Rt△CDF中,
∵∠CDF=30°,
∴CF=
1
2CD=1.
∴DF=
CD2−CF2=
3;(5分)
(3)连接OE,由(2)同理可知CE=2.
∴CF=1,
∴EF=1.
∴S直角梯形FDOE=
1
2(EF+OD)•DF=
3
3
2,
∴S扇形OED=
60π×22
360=
2π
3,
∴S阴影=S直角梯形FDOE-S扇形OED=
3
3
2-
2π
3.(7分)
已知:如图,以等边三角形ABC一边AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F
已知:如图,以等边三角形ABC一边AB为直径的圆O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F
如图,在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为F.
如图,已知等边三角形ABC,以边BC为直径的半圆与边AB,AC分别交于D ,E,过点D作DF垂直于AC于F.
如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于D、E两点,过点D作DF⊥AC,垂足为F.
如图,在△ABC中,AB=AC,以AB为直径的○o与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为F.当AB
如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G
如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于点D,交AC于点E,过点D作DF⊥AC,垂足为F.
如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于点D,交AC于点E,过点D作DF⊥AC,垂足为F
如图,在三角形ABC中,AB=AC,以AB为直径的圆O分别交BC、AC于D、E两点,过点D作DF⊥AC,垂足为F
如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于点D,过点D作DF垂直于BC,交AB的延长线于E,垂足为F.
如图,在三角形ABC中,AB=AC,以AB为直径的圆O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为E