如图,AB为圆O的直径,弦CD垂直AB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 23:31:44
oc=4,ch=2根号3,所以oh=2,ah=6,ac=4根号3,如果连接ad的话,则三角形acd为等边三角形,圆周上到直线AC的距离相当于圆周上到直线DC的距离,因为oh=2,所以bh=2,ah=6
1,∵E是弧ADB的中点,AB是圆O的直径∴OE⊥AB∴DC∥OE∴∠OEC=∠ECD∵△OEC是等腰三角形∴∠OEC=∠OCE∴∠OCE=∠ECD∴CE平分∠OCD2,∵∠BAC=∠HCB=30,∠
∵DE是⊙O的直径∴AC=BC=1/2AB根据相交弦定理AC*BC=CE*CDCD=AC*BC/CE=3*3/1=9AB=CD+CE=9+1=10OC=1/2AB-CE=5-1=4有没办法证明DE与C
作OE⊥CD于E,连结OC则CE=CD/2(垂径定理),OC=AB/2,又∵CE
1)因为AB为圆O的直径、CD是弦、且AB垂直CD所以弧BC=弧BD所以∠BCD=∠A因为OA=OC所以∠A=ACO所以∠ACO=∠BCD2)因为AB为圆O的直径、CD是弦、且AB垂直CD所以CE=D
∴AB是直径,∴∠BCE+∠ACE=90°,∵AB⊥CD,∴∠CAE+∠ACE=90°,∴∠CAE=∠BCE,∵∠AFO=∠CEB=90°,OF=BE,∴ΔAFO≌ΔCEB(AAS).
连OC,因为CD⊥AB所以CH=CD/2=√3/2在直角三角形OCH中,由勾股定理,得,OH^2=OC^2-CH^2=1-3/4=1/4解得OH=1/2所以OH=CO/2所以∠COA=60°,因为OA
证明:因为OA=OC所以∠ACO=∠A因为AB为圆O的直径,CD是弦,且AB垂直CD于E所以弧BC=弧BD所以∠A=∠BCD(等弧所对的圆周角相等)所以∠ACO=∠BCD供参考!JSWYC
∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10
1、∵AB是直径,CD⊥AB∴垂径定理:CP=1/2CD=4∠ACB=90°∵∠B=30°∴在RT△BCP中:BC=2CP=8在RT△ABC中:cos∠B=BC/ABAB=BC/cos30°=8/(√
(1)∵直径AB⊥弦CD,∴AB平分弦CD,即CE=12CD=3.在Rt△OCE中,由勾股定理,得OE=OC2−CE2=52−32=4;(2)②,证明:连接OP(如图1),∵OC=OP,∴∠2=∠3,
∵CD是⊙O的直径,AB⊥CD∴AE=BE∵AB=10∴AE=5设OA=R∴OE=R-1根据勾股定理:R²=5²+(R-1)²解得R=13∴CD=2R=26
作OF⊥AC∵OA=OB=OC=1CD=根号3AB⊥CD∴CH=根号3/2∴OH=1/2∴BH=1/2∴BC=1∴△OBC为正△∴∠B=60°∵AB为直径∴∠ACB=90°∴∠A=30°∴OF=1/2
等等再答:过点O作OE⊥CD于E∵PA=1,PB=5∴AB=PA+PB=6∴AO=AB/2=3∴OP=AO-PA=3-1=2∵OE⊥CD∴CD=2DE,∠OEP=∠OED=90∵∠DPB=∠APC=4
1连接BD.因为角ACD与角ABD对应同一条弦AD,所以,角ACD=角ABD,有因为AB为直径,所以三角ABD形为直角三角形,所以角BAD=48度.2在直角三角形ABD中,AB的平方=AD的平方BD的
证明:连接AC、AD、AG、DG,∵AB是圆O的直径,∴∠AGB=RT∠,AE⊥CD,BF⊥CD,E,F分别为垂足,∴四边形AEFG是矩形.∴AE=GF,EF//AG,∴∠ADE=∠DAG,∴②弧AC
连接OC∵AB为圆O的直径,弦CD⊥AB于E∴CE=½CD∵AB=20,EB=2∴OC=OB=10,OE=8∴OC²=CE²+OE²∴CE=√﹙100-64)=