如图,AM是三角形ABC的中线,角DAM等于角BAM
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 13:46:44
证明:∵三角形任意两边之和大于第三边∴AD+BD>AB,AD+DC>AC两式相加得:2AD+BD+DC>AB+AC∵D是BC中点∴2BD=BD+DC∴2AD+2BD>AB+AC∴AD+BD>二分之一(
∵⊿AC1M由⊿ACM翻折所得∴⊿AC1M≌⊿ACM∴C1M=CM,∠C=∠AC1M,∠CAM=∠C1AM∵∠C=90°∴∠AC1M=90°∴∠C1MC+∠C1AC=180°∵C1MC+C1MB=18
延长AM至N,使MN=AM,连结BN,BM=CM,MN=AM,AN,AN=2AM,∴AM
如图,延长AM到F,使AM=FM,并反向延长交EG于D,连结BF那么△BMF≌△CMA(SAS),BF=AC=AG,∠FBM=∠ACM,进而BF∥AC又∠BAE=∠CAG=90
自C作AM的平行线,与BA交一点,然后用中线定理结合三角形两边之差小于第三边定理即可证明再问:能给我过程吗再答:按我上面说的,假设交点为D,则2AM=CDAB=AD三角形中位线定理AD-AC
做BH//AC,CH//AB,BH与CH交于H点,ABHC为平行四边形,连接HM,因M是BC的中点,A、M、H共线,AM=AH/2.因AB//CH,所以角BAC+角ACH=180度;角BAE=角CAG
延长AM到点D,使MD=AM,连接BD易证△AMN与△BMD全等所以BD=AN在△ABD中,AD
(∵2AM<AB+AC,2CM<AB+AC∴2AM=2CMAM=CM)这里错误2AM<AB+AC,2CM<AB+AC不能推出AM=CM例如2X3<9,2X4<9
问题呢?没写出来.
∵三角形ABC中AD是高∴三角形ABD是直角三角形AB是斜边AD直角边∴AB>AD(1)∵AM是中线∴M是BC的中点,CM=1/2BC(2)∵在三角形AMC中,AM+CM>AC(3)∴综合(1)(2)
根据三角形两边之和大于第三边,两边之差小于第三边,可知AM+MB>AB (1)MC-AM<AC (2)(1)-(2),得(AM+MB)-(MC-AM)>AB-AC即 2AM>AB-AC所以 A
分析:根据三角形的面积公式,得△ACE的面积是△ACD的面积的一半,△ACD的面积是△ABC的面积的一半.∵CE是△ACD的中线,∴S△ACD=2S△ACE=8cm².∵AD是△ABC的中线
∵AD是三角形ABC的中线∴AD把三角形ABC分成面积相等的两个三角形∴三角形ABD的面积是2平方厘米同理,BE是三角形ABD的中线,BE把三角形ABD分成面积相等的两个三角形∴三角形BDE的面积是1
延长AM至P,使AM=AP.再过M作DM平行于BP,交AB于D(利用中位线的性质,D是中点).在三角形ADM中,两边之差小于第三边.即AM大于二分之一(AB-AC).再问:方便上传延长后的图型吗?再答
证明:在三角形ABM中,根据三角形两边之差小于第三边,得AB-BM
因为BD是三角形ABC的中线所以DC=1/2AC所以S三角形BDC=1/2S三角形ABC因为S三角形ABC=12所以S三角形BDC=6因为CE是三角形DBC的中线所以BE=1/2BD所以S三角形BEC
作AE∥BC交CD延长线于E,∴∠EAD=∠CBD,∠E=MCN∠ADE=∠BDC,且AD=BD∴△ADE≌△BDC∴AE=BC,又∵CN=MN∴∠MCN=∠CMN,又∵∠AME=∠CMN∴∠AME=
方法一:延长CD交AM的延长线于E.∵AB∥CE,∴∠ABM=∠ECM、∠BAM=∠CEM,又BM=CM,∴△ABM≌△ECM,∴AB=EC.∵AB∥ED,∴∠DEA=∠BAE,又∠BAE=∠DAE,
可以构造一个平行四边形ABCD根据两边之和大于第三边,两边之差小于第三边10>AD>2所以5>AM>1
如图,分别过点B、C向中线AM做垂线.证明ΔBEM≌ΔCFM(AAS)BM=CM;∠BME=∠CMF,∠BEM=∠CFM=90°