如图,BC为圆O的直径,CE为圆O的切线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:14:52
证明2:设AD交于圆o于G连AF,BG.证△CED相似于△BGD,GE=ED,证△AEF相似于△BGE,EG/EF=BE/SE=DE/EF∴EF*EB=AE*DE证明3:AB=根号2BOGE=ED=根
1)连接CE、AE因为弧AC=弧CE所以AC=CE因为CM=AC所以AC=CE=CM所以A、M、E三点在以C为圆心,AC为半径的圆上所以圆周角∠AEM=圆心角∠ACM/2因为AB是直径所以∠ACB、∠
1、证明:连接OC因为CD=BC,AO=BO所以OC是△BAD的中位线所以OC//AD,因为CE⊥AD所以CE⊥OC所以CE为圆心O的切线2、证明连接AC因为AB是直径,所以∠ACB=∠ACD=90°
证明:连接OC,则OC∥AD,可证明PC为⊙O的切线,∴PC2=PF•PA,又∵CE⊥AD于E,AB为⊙O的直径,∴∠PEA=∠PFE=90°,又∵∠EPF=∠EPF,∴△PEF∽△PAE,得PE2=
证明:连接OC,OD∵CE是切线∴OC⊥CE∵BE⊥CE∴OC//BE∴∠AOC=∠ABD∵∠AOD=2∠ABD【同弧所对的圆心角等于2倍的圆周角】∴∠AOC=∠COD∴AC=CD【相等圆心角所对的弦
所以角ABC=90度\x0d因为AB为圆O的直径\x0d所以角APB=角BPC=90度因为OP=OB所以角OPB=角ABP\x0d因为角BPC=90度,CE=BE所以PE=BE所以角BPE=角PBC\
证明:连接OP,OE.在△ABC中,CE=BE,OA=OB(⊙O半径)则E是CB中点,O是AB中点,则:OE∥AC,∴∠A=∠EOB,又∵圆周角等于圆心角的一半,∴∠POB=2∠A则:∠POE=2∠A
证明:连接BD则∠ADB=90º【直径所对的圆周角是直角】∠ABC=90º【切线垂直于经过切点的半径】∵OD=OB∴∠OBD=∠ODB∴∠CBD=∠ADO【等量减等量】∵∠CDE=
证明:令AE与圆O交于P;连接AC、CP.因为CE为切线,所以∠ECG=∠FAC.又因为AE⊥CE;,且AB为直径,所以AC⊥CF,所以△ACE∽△FCE,所以∠FCE=∠FAC,∠ECG=∠FCE.
题目条件应该打错,是BE=CE(1)证明:AB是直径,∴∠ACB=90°∠A+∠ABC=90°∵CD⊥AB,∴∠BCD+∠ABC=90°∴∠A=∠BCD又∵∠A和∠E所对都是BC弧,∠A=∠E∴∠BC
连接OD交BC于F.连接OC(1)在⊿BOF和⊿COF中因弧BD=弧CD,则∠BOD=∠COD(等弧对等角),即∠BOF=∠COF又OB=OC(半径相等)且OF=OF所以⊿BOF≌⊿COF,得BF=C
连接OC,∵∠OCE=90°,∠BEC=90°∴OC∥BE∵OC∥BE∴∠OCB=∠CBE∵OC=OB∴∠OCB=∠OBC∴∠CBE=∠OBC∴弧AC=弧CD不懂再追问,再问:啊啊..懂了!丫的这么简
1)连接CE、AE因为弧AC=弧CE所以AC=CE因为CM=AC所以AC=CE=CM所以A、M、E三点在以C为圆心,AC为半径的圆上所以圆周角∠AEM=圆心角∠ACM/2因为AB是直径所以∠ACB、∠
(1)证明:连接BC、ODAB为直径,则∠ACB=90,BC⊥ACDE⊥AC,∴DE‖BCD是弧BC中点,根据垂径定理,OD⊥BC.∴OD⊥DEDE是圆的切线(2)连接AD.∠CDE为弦切角,∠DAE
设AB=x△ABE,△EDC,△EBC为Rt三角形△ABE中,AE²+AB²=BE²->9+x²=BE²△EDC中,ED²+CD²
:(1)连接CF,∵CD、CE的长为方程x2-2(+1)x+4=0的两根;∴CE=2,CD=2;∵∠DCE=90°,∴tan∠CDE=cd∴∠CDE=60°;∵CD是⊙O的直径,∴∠DFC=90°;∴
1.证明:连结OC因为CE=CB,半径OE=OB,OC是公共边所以△OEC≌△OBC(SSS)则∠OEC=∠OBC又DE与圆O相切于点E,即∠OEC=90°则∠OBC=90°所以BC是圆O的切线,且以
延长CE交圆O于G因为CF=BF所以角FCB=角FBC所以弧CD=弧BG又因为CE垂直于AB所以弧CB=弧BG弧CD=弧CB