如图,BC是圆O的直径,点A.F在圆O上,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:18:36
如图,AB是圆O的直径,BC是圆O的弦,OD⊥CB于E,交胡BC于点D,连接CD,设角CDB=a,角ABC=b.试找出a

连接AD∠CDB=∠CDA+∠ADB直径所对的圆周角为90°所以∠ADB=90°同弧所对圆周角相等∠CDB=∠ABC∠CDB=90°+∠ABC即a=90°+

如图,已知AB是圆O的直径,过点O作弦BC的平行线,交过点A的切线AP于点P,连结AC

(1)证明:∵OP//BC∴∠AOP=∠ABC∵AB是圆O的直径∴∠ACB=90∵AP是圆O的切线∴∠PAB=90∴∠ACB=∠PAB∴△ABC≈△POA(2)AB=2OB=4,AO=BO=2∵△AB

如图,AB为圆O的直径,AD切圆O于点A,圆O的弦BC平行于OD

证明:连接OC∵OB=OC∴∠OBC=∠OCB∵OD∥BC∴∠AOD=∠OBC,∠COD=∠OCB∴∠AOD=∠COD∵OA=OC,OD=OD∴△AOD≌△COD(SAS)∴∠OCD=∠OAD∵AD切

如图,已知AB是圆o的直径,AM切圆o于点A,Do平分∠ADC,BC⊥DC,BC交圆o于点E 1.

(1)做OK⊥CD于点K因为,MA为切线所以,OA⊥AD又,OK⊥CD则,OA和OK为点O到∠ADC两边的距离因为,DO平分∠ADC且,角平分线上的点到角两边的距离相等所以,OA=OK=圆O的半径因为

如图,P是圆O外一点,PA切圆O于点A,AB是圆O的直径,BC//OP切交圆于点C,请准确判断直线PC与圆O是怎样的位置

连接AC,OC∵AB为⊙O直径∴AC⊥BC(严谨一些的话,要先∠ACB=90°再垂直)∵BC//OP∴OP⊥AC.(其实这里要写上∵BC//OP,∠BCA=90°,导出内错角也为90°,再OP⊥AC)

如图AB是圆O的直径,BC是圆O的弦,OD垂直CB于点E,交弧BC于点D,连接CD.

拜托啦,很急……今晚就要!详细过程哦!AB是圆O的直径,BC是圆O的弦,OD垂直CB,垂足为E,交弧BC于点D,连接AC,CD,DB设角CDB=α,角ABC=β,试找出α与β之间的一种关系式并给予证明

如图 AB是圆o的直径,AC为弦,OD‖BC,交AC于点D,

OD‖BC  →△AOD∽△ABC  →OD/BC=AO/AB=1:2       &nb

如图11,AB是圆O的直径,过点O作弦BC的平行线,交过点A的切线AP于点p,连接AC.(1)求证:△ABC~△POA

(1)证明:∵AB是圆O的直径∴∠ACB=90º∵AP是圆O的切线∴∠PAO=90º=∠ACB∵BC//OP∴∠ABC=∠POA∴⊿ABC∽⊿POA(AA‘)(2)∵OB=2∴AB

如图,AB是圆O的直径,BC是弦,PA切圆O于A.OP平行于BC,求证:PC是圆O的切线

证明:PA切圆O于A,则∠PAO=90°.连接OC.OP平行BC,则:∠AOP=∠B;∠COP=∠OCB.又OB=OC,∠B=∠OCB.∴∠AOP=∠COP;又OA=OC,OP=OP.故⊿AOP≌⊿C

如图,AB是⊙O的直径,过点A作AC交⊙O于点D,且AD=CD,连接BC,过点D作⊙O的切线交BC于点E.

(1)结论:DE⊥BC.理由:连接OD,∵AB是⊙O的直径,∴OA=OB.∵AD=CD,∴DO∥BC.又∵DE是⊙O的切线,∴DE⊥DO,即∠ODE=90°.∴DE⊥BC.(2)连接BD,∵AB是圆的

如图,已知BC是圆O的直径,G为弧AC的中点,AD⊥BC于点

解题思路:用圆性质证明解题过程:请把完整的条件写一下。最终答案:略

如图,已知AB是圆o的直径,过点o做弦BC的平分线,交过点A的切线AP于点P,连接AC

1)设PO交BC于DPO是BC的平分线,PO垂直于BC因为AB是圆O的直径,所以,

如图,AB是圆O的直径,BC是弦,OD⊥BC于点E,交弧BC于点D

取BE的中点F,连接OF.OE,OB为半径,所以OF垂直于EB,设半径为RE是弧BC的中点,OE交弦BC于点D,所以DE垂直于BD,DB=BC/2=4,根据勾股定理,得出BE=2根号5,OF=根号(R

如图,BC是圆O的直径,AD垂直BC于D,点A是弧BF的中点,BF与AD交与E求证:

(1)证明:延长AD于圆交于点GBC为直径,且BC⊥AD,根据垂径定理,弧AB=弧BGA为弧BF中点,所以弧AF=弧AB=弧BG∠BAG和∠ABF分别为弧BG、弧AF所对圆周角因此∠BAG=∠ABF,

如图,BD为⊙O的直径,点A是弧BC的中点,AD交BC于E点,AE=2,ED=4.

(1)证明:如图,连接AC,∵点A是弧BC的中点,∴∠ABC=∠ACB,又∵∠ACB=∠ADB,∴∠ABC=∠ADB.又∵∠BAE=∠BAE,∴△ABE∽△ABD;(2)∵AE=2,ED=4,∴AD=

如图,    BC是半圆O的直径,点G是半圆上任意一点,点A为弧BC中点,AD垂

联结ABBC是半圆O的直径,点G是半圆上任意一点,点A为弧BC中点,AD垂直BC于点D交BG于点E,AC与BG交于点F∴∠DAC=RT∠-∠ACB∠AFB=RT∠-∠ABC=RT∠-∠ACB∴∠DAC

如图,BC是圆O的直径,P是圆O上的点,A是弧BP的中点,AD⊥BC,垂足为D,PB分别与AD、AC相交于E、F

证明:(1)连AB,AP,PC.∵A是弧BP的中点∴弧AB=弧AP∴∠ACB=∠ABP(等弧所对圆周角相等)又∵BC是圆O的直径,∴∠BAC=90°AD⊥BC于D,∴∠BAD=∠ACB(同为∠ABC的

如图,PA切⊙O于A点,PO平行AC,BC是⊙O的直径.请问:直线PB是否与⊙O相切?并证明.

PB与圆O相切,理由如下:连结OA∵PA切圆O于A,∴∠OAP=90°∵AC∥OP,∴∠C=∠POB,∠CAO=∠AOP,∵OA=OC,∴∠C=∠CAO,∴∠AOP=∠BOP,又∵OP=OP,OA=O