如图,pa延长角圆o于a,b,pc边长圆o于c,d,求证,pa.pb=pd.pc
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:37:56
延长BO与圆交与M连接AB与AMOB=xPA²=PB×PM144=8×(8+2x)8+2x=18x=5△APB∽△APMAP:PM=AB:AM=12:18=2:3在△ABM中AB=2x,AM
∠ABE=90°-∠BOP=∠BPOtan∠ABE=1/2cos∠ABE=2/√5sin∠E=cos∠BPE=cos(2∠BPO)=2(cos∠ABE)²-1=3/5
(1)连结OA、OB,则OA⊥AP,OB⊥BP∴∠AOB=180°-∠APB=110°∠AQB=1/2∠AOB=55°(2)由切割线定理PA^2=PD*PE=PD*(PD+DE)可算得DE=6,∴圆的
辅助线已作如图先证三角形ABP相似于三角形CAP:公共角P角ABP=角CAB+角ACB角CAP=角OAP+角CAO且三角形OAC等腰,从而角ACB=角CAO因为角CAB=角OAP=90°所以三角形AB
连结OA,交PD于N,并延长交圆于F,连结BF,∵PA是圆的切线,∴OA⊥AP,连接OA,因为PA切圆O于A,所以Ap⊥OA,角PAO=90°因为弦AB⊥PC交PD于E,
我敢说图不标准因为三角形的长一样那面积一样,高也一样,至于高怎么求,图不准,我也不知道.也只能说C是EF的中点.
1.连接OAOB余弦定理:cosP=(PA^2+OP^2-AO^2)/2PA*OP=(PB^2+OP^2-OB^2)/2PB*OPPB=2PA2(PA^2+OP^2-AO^2)=PB^2+OP^2-O
105倍根号3~oc手机看不到
(1)连接OB、OP△POA和△POB中PA=PB,PO=PO,AO=BO(都是半径)所以△POA≌△POB,∠PAO=∠PBO因为PA为切线,所以∠PAO=90因此,∠POB=90.PB为圆切线(2
(1)证明:连接AB,∵PA、PB分别与⊙O相切于A、B两点,∴PA=PB且∠APO=∠BPO.∴OP⊥AB ①.∵AC是⊙O的直径,∴AB⊥CB ②.由①
连接OC∵OC=OA∴∠OCA=∠OAC∵AC平分∠PAO∴∠DAC=∠OAC∵CD⊥PA∴∠DCA+∠DAC=90°∴∠DCA+∠OCA=90°即∠OCD=90°∴OC⊥CDCD为圆O的切线2、过O
(1)证明:过点O分别作OE⊥AB,OH⊥CD于点E、H,∵AB=CD,∴OE=OH,在Rt△OEP与Rt△OHP中,∵OE=OHOP=OP,∴△OEP≌△OHP(HL).∴∠1=∠2;(2)证明:∵
证明:连接OB∵PA、PB是⊙O的切线∴PA=PB(从圆外一点引圆的两条切线长相等)又∵OA=OB,OP=OP∴△OAP≌△OBP(SSS)∴∠AOP=∠BOP∴∠AOB=∠AOP+∠BOP=2∠AO
延长AO交园边于点K,连接KC并延长交AP于E∵∠B=∠K(两角都是弦AC的圆周角相等)∵∠PDA=∠PAD ( PA=PD已知,等边对等角)且∠CAD=∠DAB (AD
周长25.02面积37.58再问:有过程么?
(1)证明:∵PA切⊙O于点A,∴AO⊥PA.∵PD⊥AB,∴PAPE=cos∠APE=PDPA.∴PA2=PD•PE…①∵PBC是⊙O的割线,PA为⊙O切线,∴PA2=PB•PC…②联立①②,得PD
设半径为r,角P=45°,sqrt(n)指对n开根号,/指除号,乘号省略=>PA=OA=r,=>OP=sqrt(2)r,OB=OC=r,1)PBPB=OP-OB=[sqrt(2)-1]r,PA=[sq
连接OA,∵PA为切线,∴PA⊥OA,设圆半径为R,PO^2=OA^2+PA^2,(R+1)^2=R^2+3,R=1,∴tan∠P=OA/PA=1/√3√3/3,∴∠P=30°.
角cod=60度过d做co垂线勾股定理可求7的平方根再问:答案给我再答:
PA²=PB•(PB+2R)R=3