如图,pa延长角圆o于a,b,pc边长圆o于c,d,求证,pa.pb=pd.pc

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:37:56
一道数学题:如图,已知PA切圆O于A,PO交圆O于B,PA=12,PB=8,求AB的长

延长BO与圆交与M连接AB与AMOB=xPA²=PB×PM144=8×(8+2x)8+2x=18x=5△APB∽△APMAP:PM=AB:AM=12:18=2:3在△ABM中AB=2x,AM

如图,PA为圆O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交圆O于点B,延长BO与圆O交与点D,与PA的延长线

∠ABE=90°-∠BOP=∠BPOtan∠ABE=1/2cos∠ABE=2/√5sin∠E=cos∠BPE=cos(2∠BPO)=2(cos∠ABE)²-1=3/5

如图PA、PB分别切圆O于A、B两点,直线OP交于圆O于D、E两点,交AB于点C.

(1)连结OA、OB,则OA⊥AP,OB⊥BP∴∠AOB=180°-∠APB=110°∠AQB=1/2∠AOB=55°(2)由切割线定理PA^2=PD*PE=PD*(PD+DE)可算得DE=6,∴圆的

如图,P为圆O外一点,直线OP交圆O于点B,C,过点P作圆O的切线PA,A为切点,已知PA/PB=3/2,求tan角PA

辅助线已作如图先证三角形ABP相似于三角形CAP:公共角P角ABP=角CAB+角ACB角CAP=角OAP+角CAO且三角形OAC等腰,从而角ACB=角CAO因为角CAB=角OAP=90°所以三角形AB

PA切圆O于A,割线PBC交圆O于B,C,PD垂直AB于D,延长PD交AO的延长线于E,连接CE并延长,交圆O于F,连接

连结OA,交PD于N,并延长交圆于F,连结BF,∵PA是圆的切线,∴OA⊥AP,连接OA,因为PA切圆O于A,所以Ap⊥OA,角PAO=90°因为弦AB⊥PC交PD于E,

数学难题.. 求神如图,PA、PB、EF是○O的切线,切点分别是A、B、C,连接PC并延长交圆于点D,Q是CD的中点,求

我敢说图不标准因为三角形的长一样那面积一样,高也一样,至于高怎么求,图不准,我也不知道.也只能说C是EF的中点.

如图,已知圆O上的两点A,B,延长BA到P,使PA=AB=6cm,连接OP交圆O于点C,且OP=12cm,求:

1.连接OAOB余弦定理:cosP=(PA^2+OP^2-AO^2)/2PA*OP=(PB^2+OP^2-OB^2)/2PB*OPPB=2PA2(PA^2+OP^2-AO^2)=PB^2+OP^2-O

如图,已知AC是圆O的直径,PA切圆O于点A,B是圆O上一点,PB=PA

(1)连接OB、OP△POA和△POB中PA=PB,PO=PO,AO=BO(都是半径)所以△POA≌△POB,∠PAO=∠PBO因为PA为切线,所以∠PAO=90因此,∠POB=90.PB为圆切线(2

如图,PA和PB分别与⊙O相切于A、B两点,作直径AC,并延长交PB于点D,连接OP,CB.

(1)证明:连接AB,∵PA、PB分别与⊙O相切于A、B两点,∴PA=PB且∠APO=∠BPO.∴OP⊥AB  ①.∵AC是⊙O的直径,∴AB⊥CB  ②.由①

如图,已知直线PA交圆O于A 、B,角PAO的角平分线角圆O于点C,过C作CD⊥PA于D.

连接OC∵OC=OA∴∠OCA=∠OAC∵AC平分∠PAO∴∠DAC=∠OAC∵CD⊥PA∴∠DCA+∠DAC=90°∴∠DCA+∠OCA=90°即∠OCD=90°∴OC⊥CDCD为圆O的切线2、过O

如图,P为⊙O的直径EF延长线上一点,PA交⊙O于B、A两点,PC交⊙O于点D、C两点,且AB=CD,求证:

(1)证明:过点O分别作OE⊥AB,OH⊥CD于点E、H,∵AB=CD,∴OE=OH,在Rt△OEP与Rt△OHP中,∵OE=OHOP=OP,∴△OEP≌△OHP(HL).∴∠1=∠2;(2)证明:∵

如图,PA,PB是圆O的切线,A,B为切点,过点A作圆O的直径AC,并延长交PB于点D,连接OP,CB,求证BC//OP

证明:连接OB∵PA、PB是⊙O的切线∴PA=PB(从圆外一点引圆的两条切线长相等)又∵OA=OB,OP=OP∴△OAP≌△OBP(SSS)∴∠AOP=∠BOP∴∠AOB=∠AOP+∠BOP=2∠AO

如图,三角形ABC内接于圆O,AD平分角BAC,延长BC到P,使PD=PA,求证:D是圆O的切线

延长AO交园边于点K,连接KC并延长交AP于E∵∠B=∠K(两角都是弦AC的圆周角相等)∵∠PDA=∠PAD ( PA=PD已知,等边对等角)且∠CAD=∠DAB (AD

已知如图,PA切圆O于A点,PO交圆O于B点pa=5根号,pb=5

周长25.02面积37.58再问:有过程么?

已知:如图,PA切⊙O于点A,割线PBC交⊙O于点B、C,PD⊥AB于点D,PD、AO的延长线相交于点E,连接CE并延长

(1)证明:∵PA切⊙O于点A,∴AO⊥PA.∵PD⊥AB,∴PAPE=cos∠APE=PDPA.∴PA2=PD•PE…①∵PBC是⊙O的割线,PA为⊙O切线,∴PA2=PB•PC…②联立①②,得PD

如图,已知点P是圆O外一点,PA是圆O的切线,切点为A连接PO并延长交圆O于点C,B

设半径为r,角P=45°,sqrt(n)指对n开根号,/指除号,乘号省略=>PA=OA=r,=>OP=sqrt(2)r,OB=OC=r,1)PBPB=OP-OB=[sqrt(2)-1]r,PA=[sq

如图3-2-7,BC是圆O的直径,P是CB延长线上一点,AP切圆O于点A,若PA=根号3,PB=1,求角APC的度数

连接OA,∵PA为切线,∴PA⊥OA,设圆半径为R,PO^2=OA^2+PA^2,(R+1)^2=R^2+3,R=1,∴tan∠P=OA/PA=1/√3√3/3,∴∠P=30°.

如图,PA切圆o于点A,PO交圆O于点B,延长PO交圆O于点C,OB=PB=1,OA绕点O逆时针方向旋转60度到OD,则

角cod=60度过d做co垂线勾股定理可求7的平方根再问:答案给我再答: